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Maximum Margin Classifiers



Recall: Perceptrons

▶ Linear classifier fit using loss function:

𝐿tron(𝐻( ⃗𝑥), 𝑦) = {
0, sign(𝐻( ⃗𝑥)) = sign(𝑦)
|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ sign(𝑦)



A Problem with the Perceptron

▶ Recall: the perceptron loss assigns no penalty to
points that are correctly classified.

▶ No matter how close the point is to the
boundary.



Exercise

What is the empirical risk with respect to the per-
ceptron loss of 𝐻1? What about 𝐻2?



Linear Separability

▶ Data are linearly separable if there exists a linear
classifier which perfectly classifies the data.



Margin

▶ The margin is the smallest distance between the
decision boundary and a training point.



Maximum Margin Classifier

▶ If training data are linearly separable, there are
many classifiers with zero error.

▶ We prefer classifiers with larger margins.
▶ Better generalization performance.

▶ Can we find the maximum margin classifier?
▶ I.e., the classifier with the largest possible margin?



Observation

▶ A point is classified correctly when:

{
𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) > 0, if 𝑦𝑖 = 1
𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) < 0, if 𝑦𝑖 = −1

▶ Equivalently, classification is correct if:

𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) > 0



Attempt #1

▶ Goal: Assume linear separability. Find a 𝑤⃗ so that
𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) > 0 for all data points.

▶ That is, all points are correctly classified.

▶ Too easy!
▶ Perceptron already does this.
▶ Does not force margin to be maximized.



Enforce a Margin

▶ Recall: |𝐻( ⃗𝑥)| = |𝑤⃗ ⋅ Aug( ⃗𝑥)| is proportional to
distance from decision boundary.
▶ Doesn’t measure actual distance!
▶ Scaled by a factor depending on 1/‖𝑤⃗‖.

▶ Informal: |𝐻( ⃗𝑥)| measures distance in
“prediction units”
▶ E.g., if 𝐻( ⃗𝑥) = −2, ⃗𝑥 is 2 “prediction units” away from
boundary



Enforce a Margin

▶ We can enforce a margin in “prediction units”.

▶ E.g., to require a margin of one prediction unit,
we must have

𝑦𝑖𝐻( ⃗𝑥(𝑖)) = 𝑦𝑖𝑤⃗ ⋅ Aug ⃗𝑥(𝑖) ≥ 1

for each data point



Attempt #2

▶ Goal: Assume linear separability. Find a 𝑤⃗ so that
𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for all data points.

▶ Still “too easy”.
▶ Problem: prediction units aren’t actual distance.
▶ We can artificially increase distance in “prediction
units” by increasing ‖𝑤⃗‖.



Exercise

Suppose𝐻 is a linear predictor with parameter vec-
tor 𝑤⃗. Shown are the lines one “prediction unit”
away from the decision boundary.

How will the decision boundary and these lines
change if 𝑤⃗ is doubled?

H=H=0
H=-1



Solution
▶ The decision boundary remains unchanged.

▶ The lines one “prediction unit” away move closer.

H+HF1



Observe

▶ 𝐻 satisfies 𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1

H+HF1



Observe

▶ Any vector 𝑤⃗ satisfying 𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) > 0 can be
made to satisfy 𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 by increasing
‖𝑤⃗‖ appropriately.

▶ But this is cheating!

▶ Fix: search for a low-norm 𝑤⃗ satisfying
𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1



Attempt #3

▶ Goal: out of all 𝑤⃗ satisfying 𝑦𝑖 𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for
all data points, find that with minimum ‖𝑤⃗‖

▶ That is, find:

𝑤⃗∗ = argmin
𝑤⃗

‖𝑤⃗‖

subject to: ∀𝑖, 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥) ≥ 1



Hard-SVM

▶ This optimization problem is called the Hard
Support Vector Machine classifier problem.

▶ Only makes sense if data are linearly separable.

▶ In a moment, we’ll see the Soft-SVM.



How?

▶ Turn it into a convex quadratic optimization
problem:
▶ Minimize ‖𝑤⃗‖2 subject to 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for all 𝑖.

▶ Can be solved efficiently with quadratic
programming.
▶ But there is no exact general formula for the solution



Exercise

Can the below predictor be a solution of the Hard-
SVM?

H+HF1



SVMs are Maximum Margin
Classifiers

▶ Intuition says solutions of Hard-SVM will have
large margins.

▶ Fact: they maximize the margin.
H=1

H=0

A=- 1



Support Vectors

▶ A support vector is a training point ⃗𝑥(𝑖) such that

𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) = 1
H=1

H=0

A=- 1



Support Vectors

▶ Fact: the solution to Hard-SVM is always a linear
combination of the support vectors.

▶ That is, let 𝑆 be the set of support vectors. Then

𝑤⃗∗ = ∑
𝑖∈𝑆
𝑦𝑖𝛼𝑖 Aug( ⃗𝑥(𝑖))



Example: Irises

▶ 3 classes: iris setosa, iris versicolor, iris virginica

▶ 4 measurements: petal width/height, sepal width/height



Example: Irises
▶ Using only sepal width/petal width
▶ Two classes: versicolor (black), setosa (red)
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Soft-Margin SVMs



Non-Separability

▶ So far we’ve assumed data is linearly separable.

▶ What if it isn’t?



The Problem

▶ Old Goal: Minimize ‖𝑤⃗‖2 subject to
𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 for all 𝑖.

▶ This no longer makes sense.



Cut Some Slack

▶ Idea: allow some classifications to be 𝜉𝑖 wrong,
but not too wrong.



Cut Some Slack

▶ New problem. Fix some number 𝐶 ≥ 0.

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.



The Slack Parameter, C

▶ 𝐶 controls how much slack is given.

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.
▶ Large 𝐶: don’t give much slack. Avoid
misclassifications.

▶ Small 𝐶: allow more slack at the cost of
misclassifications.



Example: Small C



Example: Large C



Soft and Hard Margins

▶ Max-margin SVM from before has hard margin.

▶ Now: the soft margin SVM.

▶ As 𝐶 → ∞, the margin hardens.
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Hinge Loss



Loss Functions?

▶ So far, we’ve learned predictors by minimizing
expected loss via ERM.

▶ But this isn’t what we did with Hard-SVM and
Soft-SVM.

▶ It turns out, we can frame Soft-SVM as an ERM
problem.



Recall: Perceptron Loss

𝐿tron(𝐻( ⃗𝑥), 𝑦) = {
0, sign(𝐻( ⃗𝑥)) = sign(𝑦)
|𝐻( ⃗𝑥)|, sign(𝐻( ⃗𝑥)) ≠ sign(𝑦)



Perceptron Loss

▶ Perceptron loss did not penalize correct
classifications.

▶ Even if they were very close to boundary.

▶ Idea: penalize predictions that are close to the
boundary, too.



The Hinge Loss

𝐿hinge(𝐻( ⃗𝑥), 𝑦) = {
0, 𝑦𝐻( ⃗𝑥) ≥ 1,
1 − 𝑦𝐻( ⃗𝑥), 𝑦𝐻( ⃗𝑥) < 1



The Hinge Loss

𝐿hinge(𝐻( ⃗𝑥), 𝑦) = max{0, 1 − 𝑦𝐻( ⃗𝑥)}



Equivalence

▶ Recall the Soft-SVM problem:

min
𝑤⃗∈ℝ𝑑+1, ⃗𝜉∈ℝ𝑛

‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
𝜉𝑖

subject to 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖)) ≥ 1 − 𝜉𝑖 for all 𝑖, ⃗𝜉 ≥ 0.

▶ Note: if ⃗𝑥(𝑖) is misclassified, then

𝜉𝑖 = 1 − 𝑦𝑖𝑤⃗ ⋅ Aug( ⃗𝑥(𝑖))



Equivalence

▶ The Soft-SVM problem is equivalent to finding 𝑤⃗
that minimizes:

𝑅svm(𝑤⃗) = ‖𝑤⃗‖2 + 𝐶
𝑛

∑
𝑖=1
max{0, 1 − 𝑦𝑖𝑤⃗ ⋅ ⃗𝑥(𝑖)}

▶ 𝑅svm is the regularized risk.

▶ 𝐶 is a parameter affecting “softness” of
boundary; chosen by you.



Another Way to Optimize

▶ In practice, SGD is often used to train soft SVMs.
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Demo: Sentiment Analysis



Why use linear predictors?

▶ Linear classifiers look to be very simple.

▶ That can be both good and bad.
▶ Good: the math is tractable, less likely to overfit
▶ Bad: may be too simple, underfit

▶ They can work surprisingly well.



Sentiment Analysis

▶ Given: a piece of text.

▶ Determine: if it is postive or negative in tone

▶ Example: “Needless to say, I wasted my money.”



The Data

▶ Sentences from reviews on Amazon, Yelp, IMDB.

▶ Each labeled (by a human) positive or negative.

▶ Examples:
▶ “Needless to say, I wasted my money.”
▶ “I have to jiggle the plug to get it to line up right.”
▶ “Will order from them again!”
▶ “He was very impressed when going from the original
battery to the extended battery.”



The Plan

▶ We’ll train a soft-margin SVM.

▶ Problem: SVMs take fixed-length vectors as
inputs, not sentences.



Bags of Words

To turn a document into a fixed-length vector:
▶ First, choose a dictionary of words:

▶ E.g.: [”wasted”, ”impressed”, ”great”, ”bad”, ”again”]

▶ Count number of occurrences of each dictionary word in
document.
▶ “It was bad. So bad that I was impressed at how bad
it was.” → (0, 1, 0, 3, 0)𝑇

▶ This is called a bag of words representation.



Choosing the Dictionary

▶ Many ways of choosing the dictionary.

▶ Easiest: take all of the words in the training set.
▶ Perhaps throw out stop words like “the”, “a”, etc.

▶ Resulting dimensionality of feature vectors:
large.



Experiment

▶ Bag of words features with 4500 word dictionary.

▶ 2500 training sentences, 500 test sentences.

▶ Train a soft margin SVM.



Choosing C

▶ We have to choose the slack parameter, 𝐶.

▶ Use cross validation!



Cross Validation



Results

▶ With 𝐶 = 0.32, test error ≈ 15.6%.




