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Lecture 6 Part1

Ridge Regression



News

Discussion worksheet solutions.



Recall: Regression with Basis
Functions

We can fit any function of the form:
H(X; W) = wy + Wy, (X) + Wy, (X) + ... + W@ (X)

¢:(X) : RY - Ris called a basis function.



Procedure
Define (X) = (§1(X), P,(X), ..., P(X))

Form n x kR design matrix:

Aug((X™)) d,(XV)  ,(
o = | Aug(@(x®) | [6:(x®) $,(39) .
Aug(p(Rm) ——— | \g, (k™) g () .

Solve the normal equations:

W* - ((DTCD)_1 (DTV



Example: Polynomial Curve Fitting

Fit a function of the form:

) = 2 3
H(X; W) = Wy + Wy X + Wy X~ + W3X

Use basis functions:

$o()=1  d(0)=x  $(x)=x*  $3(x)=x°



Example: Polynomial Curve Fitting

Design matrix becomes:

2 3

/’I X1 X3 x1\
2

T X, X5 X%




Gaussian Basis Functions

Gaussians make for useful basis functions.

—_ . 2
Bi(x) - exp(-(x H) )

2
0;

Must specify' center y; and width g; for each
Gaussian basis function.

"You pick these; they are not learned!



Example: k = 3

A function of the form: H(x) = w,¢,(x) + w,$,(x) + w;¢;(x),
using 3 Gaussian basis functions.
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Example: k =10

The more basis functions, the more complex H can be.
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Demo: Sinusoidal Data

Fit curve to 50 noisy data points.
Use k = 50 Gaussian basis functions.
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Result

Overfitting!
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Controlling Model Complexity

Model is too complex.

Can decrease complexity by reducing number of
basis functions.

Another way: regularization.



Complexity and w

Consider fitting 3 points with k = 3:

W14 (X) + W, ¢,(X) + w3d5(X)




What will happen to w,, w,, w; as the middle point
is shifted down towards zero?
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Solution
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w = [0.85 0.38 0.85]
|w| = 1.25



Solution
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w=1[ 1.00 -0.3 1.09]
|w| =1.57



Solution
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w=1[ 1.34 -0.98 1.34]
|w| =2.13



Observations

As the middle point moves down, H becomes
more complex.

The weights grow in magnitude.
||l grows.

Idea: ||W] measures complexity of H.



Experiment

Consider model with k = 20 Gaussian basis
functions.

Generate 100 random parameter vectors w.

Plot overlapping; observe complexity.



Experiment

[|w]| = 0.0
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Experiment

[[w]| = 0.5
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Experiment

[[w]| =1.0
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Experiment

[[w]|=1.5
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Experiment

[|w]] = 2.0
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Experiment

[[w]| =2.5
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Conclusion

|W] is a proxy for model complexity.
The larger ||w||, the more complex the model may be.

Idea: find a model with
small mean squared error on the training data;
but also small ||w]|



Recall: Least Squares Regression

In least squares regression, we minimize the
empirical risk:

R(W) =



Regularized Least Squares
Idea: penalize large ||w|| to control overfitting.

Goal: Minimize the re ularized risk:

/-\/\/\

n

> (- ¢(x0) - y;) + Al

i=1

3|—\

R(W) =

AllW||? is a regularization term.
“Tikhonov regularization”
A controls “strength” of regularization.



Ridge Regression

. - . . .
Least squares with ||w]|? regularization is also
known as ridge regression.



Why ||]|°?

We consider ||w]|? instead of ||w|| because it will
make the calculations cleaner.



Ridge Regression Solution

Goal: Find w* minimizing the regularized risk:

e -
J/;x-z ~2x  R(W) =~ 2 (W p(x) - )d+7\||W||
_a - D - )-2
Recall: Ax w =2

S|-

I

n
- 1 - -
(- (x0) - ;) = ~ it - 1
=1

So: 1
R(W) = HIICDV*V-Y/II2 + Al |2



xx& > (P
O ge Regressmn Solution

Strategy: calculate dR/dW, set to 6, solve.
AT
Solution: W* = (®'® + }Z)‘%DTY/ ' ‘
&I © (M dm«i‘b YM\‘}Y\X
Compare this to solution of unregularized
problem: w* = (®'®) DTy



Interpretation

F
W* = (OTD + ﬂ)-wﬂf/
A
Adds small number}?to diagonal of ®'®

nAF

Improves condition number of ®'® +ﬂ
Helpful when multicollinearity exists



Demo: Sinusoidal Data

Fit curve to 50 noisy data points.
Use k = 50 Gaussian basis functions.
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Result: no regularization

Overfitting!

2.0 '
1.5

1.0 A

. —
3

0.5 |

0.0 4 p 9
q

-0.5 b

-1.01

—-1.51

-2.0




Result: regularization

2.0

1.54

1.0 A

0.5 4

0.0 1

—0.51

-1.01

—-1.51

-2.0




Result: regularization

2.0

1.54

1.0 A

0.5

0.0 1

—0.51

-1.01

—-1.51

-2.0

A=0.0001




Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Picking A

A controls strength of penalty
Larger A: penalize complexity more
Smaller A: allow more complexity

To choose, use cross-validation.



Mean Squared Error
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Lecture 6 Part 2
The LASSO



Jal=urru s st

p norm regularization

In the last section, we minimized:

RO = 2> (- () -y, + AP

i=1

What is special about ||w]|?



p norms

For any p € [0, »), the p norm of a vector i is
defined as

d 1/p
lal, = (Z |u,-|P)
i=1



Special Case: p = 2

When p = 2, we have the familiar Euclidean norm:

d 1/2
||a||2=(Zu,-2) = |l

i=1



Special Case: p = 1

When p = 1, we have the “taxicab norm”

d
NGl => lu;l
i=1




1-norm Regularization

Consider the 1-norm regularized risk:

R = 1> (- 9(30) - )’ + Al

i=1

Least squares regression with 1-norm
regularization is called the LASSO.



Solving the LASSO

No longer differentiable.
No exact solution, unlike ridge regression.?

Can solve with subgradient descent.

2Except in special cases, such as orthonormal ®



1-norm Regularization

The 1-norm encourages sparse solutions.
That is, solutions where many entries of W are zero.

Interpretation: feature selection.



Example

Randomly-generated data:

y = 3%, + 0.2x, - 4x5 + N(0,.2)

\ W, W, W3

Unreg. | 2.33 -0.08 -4.77
2-norm | 2.29 -0.10 -4.73
1-norm | 2.72 0 -3.76
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Lecture 6 Part 3

Regularized Risk Minimization



Regularized ERM

We have seen regularization in the context of
least squares regression.

However, it is generally useful with other risks.

E.g., hinge loss + 2-norm regularization =
soft-SVM



General Regularization
Let R(W) be a risk function.
Let p(W) be a regularization function.

The regularized risk is:

R(W) = R(W) + p(i)

Goal: minimized regularized empirical risk.



Regularized Linear Models

Loss  Regularization = Name

square 2-norm ridge regression
square 1-norm LASSO

square 1-norm +2-norm elastic net
hinge 2-norm soft-SVM



