$$
\text { DSC } 140 A
$$

News

Discussion worksheet solutions.

Recall: Regression with Basis Functions

- We can fit any function of the form:

$$
H(\vec{x} ; \vec{w})=w_{0}+w_{1} \phi_{1}(\vec{x})+w_{2} \phi_{2}(\vec{x})+\ldots+w_{k} \phi_{k}(\vec{x})
$$

$\Rightarrow \phi_{i}(\vec{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a basis function.

Procedure

1. Define $\vec{\phi}(\vec{x})=\left(\phi_{1}(\vec{x}), \phi_{2}(\vec{x}), \ldots, \phi_{k}(\vec{x})\right)^{T}$
2. Form $n \times k$ design matrix:
3. Solve the normal equations:

$$
\vec{w}^{*}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \vec{y}
$$

Example: Polynomial Curve Fitting

- Fit a function of the form:

$$
H(x ; \vec{w})=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}
$$

- Use basis functions:

$$
\phi_{0}(x)=1 \quad \phi_{1}(x)=x \quad \phi_{2}(x)=x^{2} \quad \phi_{3}(x)=x^{3}
$$

Example: Polynomial Curve Fitting

- Design matrix becomes:

$$
\Phi=\left(\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
\ldots & \ldots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3}
\end{array}\right)
$$

Gaussian Basis Functions

- Gaussians make for useful basis functions.

$$
\phi_{i}(x)=\exp \left(-\frac{\left(x-\mu_{i}\right)^{2}}{\sigma_{i}^{2}}\right)
$$

- Must specify ${ }^{1}$ center μ_{i} and width σ_{i} for each Gaussian basis function.

Example: $k=3$

- A function of the form: $H(x)=w_{1} \phi_{1}(x)+w_{2} \phi_{2}(x)+w_{3} \phi_{3}(x)$, using 3 Gaussian basis functions.

Example: $k=10$

- The more basis functions, the more complex H can be.

Demo: Sinusoidal Data

- Fit curve to 50 noisy data points.
- Use $k=50$ Gaussian basis functions.

Result

- Overfitting!

Controlling Model Complexity

- Model is too complex.
- Can decrease complexity by reducing number of basis functions.
- Another way: regularization.

Complexity and \vec{w}

Consider fitting 3 points with $k=3$:

$$
w_{1} \phi_{1}(\vec{x})+w_{2} \phi_{2}(\vec{x})+w_{3} \phi_{3}(\vec{x})
$$

Exercise

What will happen to w_{1}, w_{2}, w_{3} as the middle point is shifted down towards zero?

Solution

Solution

Solution

Observations

- As the middle point moves down, H becomes more complex.
- The weights grow in magnitude.
- \| $\vec{w} \|$ grows.
> Idea: $\|\vec{W}\|$ measures complexity of H.

Experiment

- Consider model with $k=20$ Gaussian basis functions.
- Generate 100 random parameter vectors \vec{w}.
- Plot overlapping; observe complexity.

Experiment

$\|\vec{w}\|=0.0$

Experiment

$\|\vec{w}\|=0.5$

Experiment

$\|\vec{w}\|=1.0$

Experiment

$\|\vec{w}\|=1.5$

Experiment

Experiment

$\|\vec{w}\|=2.5$

Conclusion

- \| $\vec{w} \|$ is a proxy for model complexity.
- The larger $\|w\|$, the more complex the model may be.
- Idea: find a model with
- small mean squared error on the training data;
- but also small \| $\vec{w} \|$

Recall: Least Squares Regression

- In least squares regression, we minimize the empirical risk:

$$
\begin{aligned}
R(\vec{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(H\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \phi\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}
\end{aligned}
$$

Regularized Least Squares

- Idea: penalize large $\|\vec{w}\|$ to control overfitting.
- Goal: Minimize the regularized risk:

$$
\tilde{R}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \phi\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}+\lambda\|\vec{w}\|^{2}
$$

- $\lambda\|\vec{w}\|^{2}$ is a regularization term.
- "Tikhonov regularization"
- λ controls "strength" of regularization.

Ridge Regression

- Least squares with $\|w\|^{2}$ regularization is also known as ridge regression.

Why $\|\vec{w}\|^{2} ?$

- We consider $\|\vec{w}\|^{2}$ instead of $\|\vec{w}\|$ because it will make the calculations cleaner.

Ridge Regression Solution

- Goal: Find \vec{w}^{*} minimizing the regularized risk:

$$
\tilde{R}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \phi\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}+\lambda\|\vec{w}\|^{2}
$$

- Recall:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \phi\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}=\frac{1}{n}\|\Phi \vec{w}-\vec{y}\|^{2}
$$

- So:

$$
\tilde{R}(\vec{w})=\frac{1}{n}\|\Phi \vec{w}-\vec{y}\|^{2}+\lambda\|\vec{w}\|^{2}
$$

Ridge Regression Solution

- Strategy: calculate $d \tilde{R} / d \vec{w}$, set to $\overrightarrow{0}$, solve.
- Solution: $\vec{w}^{*}=\left(\Phi^{\top} \Phi+n \lambda l\right)^{-1} \Phi^{T} \vec{y}$
- Compare this to solution of unregularized problem: $\vec{w}^{*}=\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} \vec{y}$

Interpretation

$$
\vec{w}^{*}=\left(\Phi^{T} \Phi+n \lambda I\right)^{-1} \Phi^{T} \vec{y}
$$

\Rightarrow Adds small number λ to diagonal of $\Phi^{\top} \Phi$
\Rightarrow Improves condition number of $\Phi^{T} \Phi+n \lambda$

- Helpful when multicollinearity exists

Demo: Sinusoidal Data

- Fit curve to 50 noisy data points.
- Use $k=50$ Gaussian basis functions.

Result: no regularization

- Overfitting!

Result: regularization

Result: regularization

Result: regularization

Result: regularization

Result: regularization

Result: regularization

Result: regularization

Result: regularization

Result: regularization

Picking λ

$>\lambda$ controls strength of penalty

- Larger λ : penalize complexity more
- Smaller λ : allow more complexity
- To choose, use cross-validation.

$$
D S C 140 A
$$

p norm regularization

- In the last section, we minimized:

$$
\tilde{R}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \phi\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}+\lambda\|\vec{w}\|^{2}
$$

- What is special about \| $\vec{w} \|$?

p norms

\Rightarrow For any $p \in[0, \infty)$, the p norm of a vector \vec{u} is defined as

$$
\|\vec{u}\|_{p}=\left(\sum_{i=1}^{d}\left|u_{i}\right|^{p}\right)^{1 / p}
$$

Special Case: $p=2$

When $p=2$, we have the familiar Euclidean norm:

$$
\|\vec{u}\|_{2}=\left(\sum_{i=1}^{d} u_{i}^{2}\right)^{1 / 2}=\|\vec{u}\|
$$

Special Case: $p=1$

- When $p=1$, we have the "taxicab norm"

$$
\|\vec{u}\|_{1}=\sum_{i=1}^{d}\left|u_{i}\right|
$$

1-norm Regularization

- Consider the 1-norm regularized risk:

$$
\tilde{R}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \phi\left(\vec{x}^{(i)}\right)-y_{i}\right)^{2}+\lambda\|\vec{w}\|_{1}
$$

- Least squares regression with 1-norm regularization is called the LASSO.

Solving the LASSO

- No longer differentiable.
- No exact solution, unlike ridge regression. ${ }^{2}$
- Can solve with subgradient descent.
${ }^{2}$ Except in special cases, such as orthonormal Φ

1-norm Regularization

- The 1-norm encourages sparse solutions.
- That is, solutions where many entries of \vec{w} are zero.
- Interpretation: feature selection.

Example

- Randomly-generated data:

$$
\begin{array}{c|ccc}
y=3 x_{1}+0.2 x_{2}-4 x_{3}+\mathcal{N}(0, .2) \\
\hline & w_{1} & w_{2} & w_{3} \\
\hline \text { Unreg. } & 2.33 & -0.08 & -4.77 \\
\text { 2-norm } & 2.29 & -0.10 & -4.73 \\
\text { 1-norm } & 2.72 & 0 & -3.76
\end{array}
$$

Why?

Probatilistic Modeling $\&$ Machine Learning
Lecture 7 | Part 3
Regularized Risk Minimization

Regularized ERM

- We have seen regularization in the context of least squares regression.
- However, it is generally useful with other risks.
- E.g., hinge loss + 2-norm regularization = soft-SVM

General Regularization

- Let $R(\vec{w})$ be a risk function.
- Let $\rho(\vec{w})$ be a regularization function.
- The regularized risk is:

$$
\tilde{R}(\vec{w})=R(\vec{w})+\rho(\vec{w})
$$

- Goal: minimized regularized empirical risk.

Regularized Linear Models

Loss	Regularization	Name
square	2-norm	ridge regression
square	1-norm	LASSO
square	1-norm + 2-norm	elastic net
hinge	2-norm	soft-SVM

