
Lecture 7 | Part 1

Ridge Regression



News

▶ Discussion worksheet solutions.



Recall: Regression with Basis
Functions

▶ We can fit any function of the form:

𝐻( ⃗𝑥; �⃗�) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + … + 𝑤𝑘𝜙𝑘( ⃗𝑥)

▶ 𝜙𝑖( ⃗𝑥) ∶ ℝ𝑑 → ℝ is called a basis function.



Procedure

1. Define �⃗�( ⃗𝑥) = (𝜙1( ⃗𝑥), 𝜙2( ⃗𝑥), … , 𝜙𝑘( ⃗𝑥))𝑇

2. Form 𝑛 × 𝑘 design matrix:

Φ = (
Aug(𝜙( ⃗𝑥(1)))
Aug(𝜙( ⃗𝑥(2)))

⋮ ⋮
Aug(𝜙( ⃗𝑥(𝑛)))

) = (
𝜙1( ⃗𝑥(1)) 𝜙2( ⃗𝑥(1)) … 𝜙𝑘( ⃗𝑥(1))
𝜙1( ⃗𝑥(2)) 𝜙2( ⃗𝑥(2)) … 𝜙𝑘( ⃗𝑥(2))

⋮ ⋮ ⋮ ⋮
𝜙1( ⃗𝑥(𝑛)) 𝜙2( ⃗𝑥(𝑛)) … 𝜙𝑘( ⃗𝑥(𝑛))

)

3. Solve the normal equations:

�⃗�∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦



Example: Polynomial Curve Fitting

▶ Fit a function of the form:

𝐻(𝑥; �⃗�) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3

▶ Use basis functions:

𝜙0(𝑥) = 1 𝜙1(𝑥) = 𝑥 𝜙2(𝑥) = 𝑥2 𝜙3(𝑥) = 𝑥3



Example: Polynomial Curve Fitting

▶ Design matrix becomes:

Φ =
⎛⎜⎜⎜⎜

⎝

1 𝑥1 𝑥21 𝑥31

1 𝑥2 𝑥22 𝑥32

… … ⋱ ⋮

1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛

⎞⎟⎟⎟⎟

⎠



Gaussian Basis Functions

▶ Gaussians make for useful basis functions.

𝜙𝑖(𝑥) = exp (−
(𝑥 − 𝜇𝑖)2

𝜎2𝑖
)

▶ Must specify1 center 𝜇𝑖 and width 𝜎𝑖 for each
Gaussian basis function.

1You pick these; they are not learned!



Example: 𝑘 = 3
▶ A function of the form: 𝐻(𝑥) = 𝑤1𝜙1(𝑥) + 𝑤2𝜙2(𝑥) + 𝑤3𝜙3(𝑥),
using 3 Gaussian basis functions.
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Example: 𝑘 = 10
▶ The more basis functions, the more complex 𝐻 can be.
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Demo: Sinusoidal Data
▶ Fit curve to 50 noisy data points.
▶ Use 𝑘 = 50 Gaussian basis functions.
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Result
▶ Overfitting!
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Controlling Model Complexity

▶ Model is too complex.

▶ Can decrease complexity by reducing number of
basis functions.

▶ Another way: regularization.



Complexity and �⃗�
▶ Consider fitting 3 points with 𝑘 = 3:

𝑤1𝜙1( ⃗𝑥) + 𝑤2𝜙2( ⃗𝑥) + 𝑤3𝜙3( ⃗𝑥)
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Exercise

What will happen to 𝑤1, 𝑤2, 𝑤3 as the middle point
is shifted down towards zero?
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Solution
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Solution
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Observations

▶ As the middle point moves down, 𝐻 becomes
more complex.

▶ The weights grow in magnitude.

▶ ‖�⃗�‖ grows.

▶ Idea: ‖�⃗�‖ measures complexity of 𝐻.



Experiment

▶ Consider model with 𝑘 = 20 Gaussian basis
functions.

▶ Generate 100 random parameter vectors �⃗�.

▶ Plot overlapping; observe complexity.



Experiment
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Experiment

0 5 10 15 20
x

||w|| = 1.0



Experiment
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Experiment
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Conclusion

▶ ‖�⃗�‖ is a proxy for model complexity.
▶ The larger ‖𝑤‖, the more complex the model may be.

▶ Idea: find a model with
▶ small mean squared error on the training data;
▶ but also small ‖�⃗�‖



Recall: Least Squares Regression

▶ In least squares regression, we minimize the
empirical risk:

𝑅(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
(𝐻( ⃗𝑥(𝑖)) − 𝑦𝑖)

2

= 1𝑛

𝑛

∑
𝑖=1
(�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)

2



Regularized Least Squares

▶ Idea: penalize large ‖�⃗�‖ to control overfitting.

▶ Goal: Minimize the regularized risk:

�̃�(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
(�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)

2 + 𝜆‖�⃗�‖2

▶ 𝜆‖�⃗�‖2 is a regularization term.
▶ “Tikhonov regularization”
▶ 𝜆 controls “strength” of regularization.



Ridge Regression

▶ Least squares with ‖𝑤‖2 regularization is also
known as ridge regression.



Why ‖�⃗�‖2?

▶ We consider ‖�⃗�‖2 instead of ‖�⃗�‖ because it will
make the calculations cleaner.



Ridge Regression Solution
▶ Goal: Find �⃗�∗ minimizing the regularized risk:

�̃�(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
(�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)

2 + 𝜆‖�⃗�‖2

▶ Recall:
1
𝑛

𝑛

∑
𝑖=1
(�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)

2 = 1𝑛‖Φ�⃗� − ⃗𝑦‖2

▶ So:
�̃�(�⃗�) = 1𝑛‖Φ�⃗� − ⃗𝑦‖2 + 𝜆‖�⃗�‖2



Ridge Regression Solution

▶ Strategy: calculate 𝑑�̃�/𝑑�⃗�, set to 0⃗, solve.

▶ Solution: �⃗�∗ = (Φ𝑇Φ + 𝑛𝜆𝐼)−1Φ𝑇 ⃗𝑦

▶ Compare this to solution of unregularized
problem: �⃗�∗ = (Φ𝑇Φ)−1Φ𝑇 ⃗𝑦



Interpretation

�⃗�∗ = (Φ𝑇Φ + 𝑛𝜆𝐼)−1Φ𝑇 ⃗𝑦

▶ Adds small number 𝜆 to diagonal of Φ𝑇Φ

▶ Improves condition number of Φ𝑇Φ + 𝑛𝜆𝐼
▶ Helpful when multicollinearity exists



Demo: Sinusoidal Data
▶ Fit curve to 50 noisy data points.
▶ Use 𝑘 = 50 Gaussian basis functions.
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Result: no regularization
▶ Overfitting!
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Result: regularization
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Picking 𝜆

▶ 𝜆 controls strength of penalty
▶ Larger 𝜆: penalize complexity more
▶ Smaller 𝜆: allow more complexity

▶ To choose, use cross-validation.
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Lecture 7 | Part 2

The LASSO



𝑝 norm regularization

▶ In the last section, we minimized:

�̃�(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
(�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)

2 + 𝜆‖�⃗�‖2

▶ What is special about ‖�⃗�‖?



𝑝 norms

▶ For any 𝑝 ∈ [0,∞), the 𝑝 norm of a vector �⃗� is
defined as

‖�⃗�‖𝑝 = (
𝑑

∑
𝑖=1
|𝑢𝑖|𝑝)

1/𝑝



Special Case: 𝑝 = 2

▶ When 𝑝 = 2, we have the familiar Euclidean norm:

‖�⃗�‖2 = (
𝑑

∑
𝑖=1
𝑢2𝑖 )

1/2

= ‖�⃗�‖



Special Case: 𝑝 = 1
▶ When 𝑝 = 1, we have the “taxicab norm”

‖�⃗�‖1 =
𝑑

∑
𝑖=1
|𝑢𝑖|



1-norm Regularization

▶ Consider the 1-norm regularized risk:

�̃�(�⃗�) = 1𝑛

𝑛

∑
𝑖=1
(�⃗� ⋅ 𝜙( ⃗𝑥(𝑖)) − 𝑦𝑖)

2 + 𝜆‖�⃗�‖1

▶ Least squares regression with 1-norm
regularization is called the LASSO.



Solving the LASSO

▶ No longer differentiable.

▶ No exact solution, unlike ridge regression.2

▶ Can solve with subgradient descent.

2Except in special cases, such as orthonormal Φ



1-norm Regularization

▶ The 1-norm encourages sparse solutions.
▶ That is, solutions where many entries of �⃗� are zero.

▶ Interpretation: feature selection.



Example

▶ Randomly-generated data:

𝑦 = 3𝑥1 + 0.2𝑥2 − 4𝑥3 +N (0, .2)

𝑤1 𝑤2 𝑤3
Unreg. 2.33 -0.08 -4.77
2-norm 2.29 -0.10 -4.73
1-norm 2.72 0 -3.76



Why?



Lecture 7 | Part 3

Regularized Risk Minimization



Regularized ERM

▶ We have seen regularization in the context of
least squares regression.

▶ However, it is generally useful with other risks.

▶ E.g., hinge loss + 2-norm regularization =
soft-SVM



General Regularization

▶ Let 𝑅(�⃗�) be a risk function.

▶ Let 𝜌(�⃗�) be a regularization function.

▶ The regularized risk is:

�̃�(�⃗�) = 𝑅(�⃗�) + 𝜌(�⃗�)

▶ Goal: minimized regularized empirical risk.



Regularized Linear Models

Loss Regularization Name

square 2-norm ridge regression
square 1-norm LASSO
square 1-norm + 2-norm elastic net
hinge 2-norm soft-SVM


