

Lecture 7 | Part 1 Ridge Regression

News

Discussion worksheet solutions.

Recall: Regression with Basis Functions

We can fit any function of the form:

$$H(\vec{x};\vec{w}) = w_0 + w_1\phi_1(\vec{x}) + w_2\phi_2(\vec{x}) + \dots + w_k\phi_k(\vec{x})$$

▶ $\phi_i(\vec{x})$: $\mathbb{R}^d \to \mathbb{R}$ is called a **basis function**.

Procedure

1. Define
$$\vec{\phi}(\vec{x})$$
 = $(\phi_1(\vec{x}), \phi_2(\vec{x}), ..., \phi_k(\vec{x}))^T$

2. Form *n* × *k* design matrix:

$$\Phi = \begin{pmatrix} \operatorname{Aug}(\phi(\vec{x}^{(1)})) \xrightarrow{\longrightarrow} \\ \operatorname{Aug}(\phi(\vec{x}^{(2)})) \xrightarrow{\longrightarrow} \\ \vdots \\ \operatorname{Aug}(\phi(\vec{x}^{(n)})) \xrightarrow{\longrightarrow} \\ \end{cases} = \begin{pmatrix} \phi_1(\vec{x}^{(1)}) & \phi_2(\vec{x}^{(1)}) & \dots & \phi_k(\vec{x}^{(1)}) \\ \phi_1(\vec{x}^{(2)}) & \phi_2(\vec{x}^{(2)}) & \dots & \phi_k(\vec{x}^{(2)}) \\ \vdots & \vdots & \vdots \\ \phi_1(\vec{x}^{(n)}) & \phi_2(\vec{x}^{(n)}) & \dots & \phi_k(\vec{x}^{(n)}) \end{pmatrix}$$

3. Solve the normal equations:

$$\vec{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \vec{y}$$

Example: Polynomial Curve Fitting

Fit a function of the form:

$$H(x; \vec{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

Use basis functions:

$$\phi_0(x) = 1$$
 $\phi_1(x) = x$ $\phi_2(x) = x^2$ $\phi_3(x) = x^3$

Example: Polynomial Curve Fitting

Design matrix becomes:

$$\Phi = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \dots & \dots & \ddots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{pmatrix}$$

Gaussian Basis Functions

Gaussians make for useful basis functions.

$$\phi_i(x) = \exp\left(-\frac{(x-\mu_i)^2}{\sigma_i^2}\right)$$

• Must specify¹ **center** μ_i and **width** σ_i for each Gaussian basis function.

¹You pick these; they are not learned!

Example: *k* = 3

A function of the form: $H(x) = w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x)$, using 3 Gaussian basis functions.

Example: *k* = 10

▶ The more basis functions, the more complex *H* can be.

Demo: Sinusoidal Data

- Fit curve to 50 noisy data points.
- Use k = 50 Gaussian basis functions.

Result

Overfitting!

Controlling Model Complexity

Model is too complex.

Can decrease complexity by reducing number of basis functions.

Another way: **regularization**.

Complexity and \vec{w}

Consider fitting 3 points with k = 3:

 $w_1\phi_1(\vec{x}) + w_2\phi_2(\vec{x}) + w_3\phi_3(\vec{x})$

Exercise

What will happen to w_1, w_2, w_3 as the middle point is shifted down towards zero?

Solution

Solution

Solution

Observations

- As the middle point moves down, H becomes more complex.
- ► The weights grow in magnitude.
- ► ||*ŵ*|| grows.
- Idea: $\|\vec{w}\|$ measures **complexity** of *H*.

- Consider model with k = 20 Gaussian basis functions.
- Generate 100 random parameter vectors \vec{w} .
- Plot overlapping; observe complexity.

x

x

Conclusion

- ||w|| is a proxy for model complexity.
 The larger ||w||, the more complex the model may be.
- Idea: find a model with
 - small mean squared error on the training data;
 - ▶ but also small $\|\vec{w}\|$

Recall: Least Squares Regression

In least squares regression, we minimize the empirical risk:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(H(\vec{x}^{(i)}) - y_i \right)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2$$

Regularized Least Squares

- ▶ Idea: penalize large $\|\vec{w}\|$ to control overfitting.
- Goal: Minimize the regularized risk:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2 + \lambda \|\vec{w}\|^2$$

- $\land \|\vec{w}\|^2$ is a regularization term.
 - "Tikhonov regularization"
 - > λ controls "strength" of regularization.

Ridge Regression

Least squares with ||w||² regularization is also known as ridge regression.

Why $\|\vec{w}\|^2$?

We consider ||w||² instead of ||w|| because it will make the calculations cleaner.

Ridge Regression Solution

Goal: Find \vec{w}^* minimizing the regularized risk:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2 + \lambda \|\vec{w}\|^2$$

Recall:

$$\frac{1}{n}\sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2 = \frac{1}{n} \| \Phi \vec{w} - \vec{y} \|^2$$

So:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \| \boldsymbol{\Phi} \vec{w} - \vec{y} \|^2 + \lambda \| \vec{w} \|^2$$

Ridge Regression Solution

Strategy: calculate $d\tilde{R}/d\vec{w}$, set to $\vec{0}$, solve.

Solution:
$$\vec{w}^* = (\Phi^T \Phi + n\lambda I)^{-1} \Phi^T \vec{y}$$

h

• Compare this to solution of unregularized problem: $\vec{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \vec{y}$

Interpretation

$$\vec{w}^* = (\Phi^T \Phi + n\lambda I)^{-1} \Phi^T \vec{y}$$

- Adds small number λ to diagonal of $\Phi^T \Phi$
- Improves condition number of Φ^TΦ + nλI
 Helpful when multicollinearity exists

Demo: Sinusoidal Data

- Fit curve to 50 noisy data points.
- Use k = 50 Gaussian basis functions.

Overfitting!

Picking λ

- λ controls strength of penalty
 Larger λ: penalize complexity more
 Smaller λ: allow more complexity
- To choose, use **cross-validation**.

Lecture 7 | Part 2

The LASSO

p norm regularization

In the last section, we minimized:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2 + \lambda \|\vec{w}\|^2$$

▶ What is special about $\|\vec{w}\|$?

p norms

For any $p \in [0, \infty)$, the p norm of a vector \vec{u} is defined as

$$\|\vec{u}\|_{p} = \left(\sum_{i=1}^{d} |u_{i}|^{p}\right)^{1/p}$$

Special Case: *p* = 2

When p = 2, we have the familiar Euclidean norm:

$$\|\vec{u}\|_{2} = \left(\sum_{i=1}^{d} u_{i}^{2}\right)^{1/2} = \|\vec{u}\|$$

Special Case: *p* = 1

1-norm Regularization

Consider the 1-norm regularized risk:

$$\tilde{R}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{w} \cdot \phi(\vec{x}^{(i)}) - y_i \right)^2 + \lambda \| \vec{w} \|_1$$

Least squares regression with 1-norm regularization is called the LASSO.

Solving the LASSO

No longer differentiable.

▶ No exact solution, unlike ridge regression.²

Can solve with subgradient descent.

 $^{^2\}text{Except}$ in special cases, such as orthonormal Φ

1-norm Regularization

The 1-norm encourages sparse solutions.
 That is, solutions where many entries of w are zero.

Interpretation: feature selection.

Example

Randomly-generated data:

_

$$y = 3x_1 + 0.2x_2 - 4x_3 + \mathcal{N}(0, .2)$$

	W ₁	W ₂	W ₃
Unreg.	2.33	-0.08	-4.77
2-norm	2.29	-0.10	-4.73
1-norm	2.72	0	-3.76

Why?

Lecture 7 | Part 3

Regularized Risk Minimization

Regularized ERM

- We have seen regularization in the context of least squares regression.
- However, it is generally useful with other risks.
- E.g., hinge loss + 2-norm regularization = soft-SVM

General Regularization

- Let $R(\vec{w})$ be a risk function.
- Let $\rho(\vec{w})$ be a regularization function.
- The regularized risk is:

 $\tilde{R}(\vec{w}) = R(\vec{w}) + \rho(\vec{w})$

Goal: minimized regularized empirical risk.

Regularized Linear Models

Loss	Regularization	Name
square	2-norm	ridge regression
square	1-norm	LASSO
square	1-norm + 2-norm	elastic net
hinge	2-norm	soft-SVM