Ds<C /40A

Prbatifiche Medihiy ¢ Wnchine arone),

Lecture 8 Part1

High-Dimensional Feature Maps

Linear Prediction Rules

We have seen how to fit linear functions:

H(X) = Wy + Wy Xq + ... + WX
Used for both regression and classification

Limitation: regression function / decision
boundary is a straight line / plane / hyperplane

Example

The data below is not linearly separable

No prediction function of the form
H(Xq, X5) = Wo + W X4 + X5 X, Will work well

H(‘()’ Wo+w| C«G)‘) +
W P 3) 4

“ However...

We have seen a way around this limitation: basis
functions.

Idea: design a function q§(7<) that maps data to a
new space in which it is linearly separable.

Y

Example

"’V"-L q7 Wg

w,+ w, ¢

= (X11X21 |X1X2|)T

-

Consider the mapping ¢(x,, X5)

L
o
i
n
S
o
=
n
S
1
<
=
1
®oPy ou0l W, & °
\Oou 00..-0..0..
w ® o o,
c'ooo °¥%, °
oy ¢ =0
° .\ot -.0. oo ooo °.
° &% ooo“-oc o-oo\‘oﬁooo“ﬂ-
0 __ 8% o__g. B .
o0 °® o © o0 °,
I O 8o
P A .oo..vt. o
0% 1) 0% R
o of ‘9 o
oo oﬂ o-ooovoMMo
)
0.0 loio ooonﬂfo.ooocm *
8 % o®o @ %°%
g °o® e oo ¥
S © o 1w g w o w g
S = & & S5 § @& = 8
s 8 s S ¢ e 3§ o

¢2

0.0 0.5
x

-0.5

-1.0

¢\ Procedure

Define feature map $(X) : RY > RF
G(X) = ($1(X), ., B1(X))T

Number of basis functions k can be > or < than d

Map each training point to kR-dimensional
feature space: X - @(X()

Learn a linear predictor in feature space:

HIR) = s wiy () + .. L, ()

H)= wity, ACY

Procedure +w, (2
Fwslp, (%)
"“DATA SPACE" "FEATURE SPACE’

o © /*‘?«,

Q o
o -
O o o o X - %o Oo
o o
o o G o
o) o o0
o [[”

o
OOO O

Procedure

"DATA SPACE’ "FEATURE SPACE’
/\
(o]
(@]

0o
G w o°

O—l
X (@]
o

\2

Example
Use mapping d3(7<) = (Xq, Xg, [X1 %, [)T

Decision boundary in “data space” no longer a
straight line.

", W‘\A(0:757'-\‘-'

SRR
\, }

) 00e 4% ° (-] e
0.50 & O:.o N v .:: ° @ O
L ° ° o
P ee0®o ° o
0w %o e‘:’ \.‘o. o
Ces® @ e,

1.0
-1.00 075 050 025 000 025 050 075 1.00

Q&)= 92,2 = (2,-3,6)7
) HG) = w

Suppose w = (3,-1,2)" defines a linear predictor in

feature space and 43 = (Xq, Xy, | XX, |)7 is the map-
ping from “data space” to “feature space”.

Let X = (2,-3)" be a new point that needs to be
claSS|ﬁed hat is the predicted label?

m«

(; Q > = 2\ H®:- 2)
7

Feature Maps

How do we choose ¢?

Hope: data is linearly separable in feature space

Appears difficult to engineer J) to satisfy this.
Need to design 43 for each new data set?

Goal: design a general feature map that is likely
to make any data set linearly separable

High-Dimensional Feature Maps

Observe: in our example, 45 mapped to space of
larger dimension

-0.25

-0.50

-0.75

-1.00

High-Dimensional Feature Maps

Intuition: each additional feature makes the
data easier to classify.

Intuition: a high-dimensional feature map is
likely to make the data linearly separable.

Idea: design very high-dimensional generic
feature maps.

(‘(u\(?/)
Example: Monomials

Define a feature map ¢ : R2 —» RS as follows:
(i)()?) = (11X11X21X1 X21X121X§)T

We fit a prediction function of the form:

) = 2 2
H(X) = Wy + Wy Xq + Wy Xy + W3Xq Xy + W, XT + Ws X5

Example: Monomials

0.25 1
0.00 A

o ® .. °
_0.25-“........‘.. o:? “ ° ’:I.
-0.501 ®

) °
—0.75 g @ .:. *. :. o o, °

[) .'.
-1.00 .°! 8 o Y%e o
~1.00 —0.75 —0.50 —=0.25 0.00 0.25 0.50 0.75 1.00

CK‘ 1\[7—)\[5> I (\) Xy %y)\(5,)(J(; ;\(ZX? N X X, >
Example: Monomials «z, <;,«2)

In general, define a feature map 43 to contain all
monomials of the form:

1, X;, XiX;, X;

- d
If % € RY, then ¢(X) € R'*29(C),

Example: if X € R50, then ¢(X) € R'326,

Example: Monomials

Why stop there? Design cﬁ to contain all terms of
form:

2 3
1, X;, X X;, X7, XiX; Xpy X;

If % € RY then ¢(X) e R"3%E1),
Example: if X € R50, then ¢(X) € R209761

And so on...

Problem

Mapping to very high dimensions is likely to
make the data linearly separable.

But fitting a linear prediction rule in high
dimensions is costly.

Ds<c /40A

Z /’bbﬂb}ﬂfs"fc Mﬂ&ﬂ}iy ¢ Maehime ﬁﬁrmh?,

Lecture 8 Part 2

The Kernel Trick

Recap

We can learn non-linear patterns by:

Defining a high-dimensional feature map,
¢ : R? - RE

Mapping each training point to k-dimensional feature
space: X0 @(X1)

Training a linear predictor in feature space.

Problem

Learning in a very high-dimensional space can
be costly, or even infeasible.

The Trick

We can train many linear predictors as if we have
mapped data to feature space, without actually
doing so.

Idea

In many algorithms, when ¢3(7<) appears, it always
appears as part of a dot product:

$(X) - P(X')

To compute, we could map and do dot product in
feature space.

But this is costly!

Kernels

But some 43 are special; for them, there is a
function k satisfying:

K(%,X') = p(X) - p(X')

Crucially, computing k does not require mapping
to feature space!

K is called a kernel function.

The Kernel Trick

In many algorithms, when (f)()?) appears, it always
appears as part of a dot product of the form:

$(X)- $(X')
By replacing all instances of ¢(%) - ¢(X') with

K(X, X'), we kernelize the algorithm; avoid
mapping to feature space.

This is called the kernel trick.

Example: Polynomial Kernel

Define the feature map:

B(R) = (1, X2, X2, X272 X, V2 X5, /2 X3, V2 X, X5, V/2 Xy X3, V2 Xy %)

KX, X')=(1+X- 7() |sakernelforth|s¢
That is, K(X, X') = $(X) - $(X')

Called the polynomial kernel

-

"In general, k(X, X') = (1 + X - X") is kernel for k-order monomial mappings

Kernelized Algorithms

Only certain mappings have efficiently-computed
kernels.

Only certain learning algorithms can be
kernelized.

All of the linear algorithms we've learned can.
Least squares, perceptron, SVMs, etc.

Kernel Ridge Regression
Let's kernelize ridge regression.

First: verify that all instances of 43(7() appear as
part of a dot product: ¢(X) - ¢(X’)

Kernel Ridge Regression

Suppose <f>(7<) is a feature map with kernel k.

To train a ridge regressor in feature space, we'd
solve

argwml %i((f)i’)) W - y,) + AW |2

In matrix-vector form, where @ is the design
matrix:

argmln —||CDW yIIZ + A w

Fact

The solution w* is a linear combination of ¢(X):

n -
= Z a;p(x"
=

Why? The gradient of the regularized risk is:
—Z(W - y,) (XD + 2A0

Setting to zero, solving for W gives:

W = i (_%43(7((:')) - y’,) ()

i=1 «

~
a;

2) —= Fact

The solution w* is a linear combination of ¢(x):
n R .
i =) ag(x)

i=1

I

In matrix-vector form, where @ = (ay, ..., a,)":

Dual Problem ¢-Z

Using the fact that w* = ¥, a;¢(X() = ®"a for
some @, the problem:

argmin 1||CDVT/ -yII? + AW
W n
is equivalent to the dual problem:

arg min %u@cDT& |2 + AGTODTE
a

Kernelizing

Where does J)(x) appear in this problem?

argmm—ll?ga ylI% +Ad 9{

@2 - Y& ¢&?

Inside @:

Argue that the (i, j) entry of ®®'
K(ZO, 20,

is equal to

& @6‘"’

Kernelizing

The (i, j) entry of ®®T is $(X1D) - (XV) = k(xM, 30))

kK(XM, X)) k(XN X)) oo (%M, XMy
k(X2), XMy k(XP), X)) .. k(X2 %My

K is called the Kernel matrix (or Gram matrix).

Kernel Ridge Regression
The dual problem becomes:
argmin 1||K6l - yII? + Ad"Ka
& n
Exact solution: v\)\&
a* = (K+ﬂ)‘137

This is kernel ridge regression.

Kernelization

Observe: we train linear predictor in feature
space without actually mapping to feature space:

6 = (K +24)'19

NI

Making Predictions

To predict on a new point X, normally:
H(X) = w* - ¢(X).

How to do this without actually mapping?
Recall: w* = ¥ a¢(x1)

So:

Making Predictions

To make a prediction on a new point:

n
H(%) = > aik(xD, %)

i=1
No need to map to feature space.

Interpretation: A weighted sum of kernel
evaluations.

Procedure: Kernel Ridge Regression
Pick a kernel function, k.

AT

Solve linear system: a* = (K +)(@137

To make new prediction, H(X) = ¥, o k(X), X)

Kernel Soft-SVM

Soft-SVM can also be kernelized.
Pick a kernel function, k.

Solve dual problem (e.g., with SGD):

n
argmin (Aa"ka + ~ > max{0, 1 - yi(ka);)
a N5

To make new prediction, H(X) = Y. a’k(X"), X)
Where S is the set of indices of support vectors.

Kernelization Downsides

Often, training involves the n x n kernel matrix.
Can be very large!

There are ways to mitigate this:
Small-batch stochastic gradient descent.
Nystrom method.

Ds<c /40A

Z /’bbﬂb}ﬂfs"fc Mﬂ&ﬂ}iy ¢ Maehime ﬁﬁrmh?,

Lecture 8 Part3

Kernel Functions

Valid Kernels

The first step in kernel learning is to pick a
kernel function, k.

To be a valid kernel, must compute the dot
product w.rt., some mapping, ¢(X).

That is, it must be that
K(Z, X') = p(X) - $(X')

for some 43

Constructing Kernels: Approach #1
How do we come up with valid kernel functions?

Approach #1:
Start by pickingcﬁ

Find a function that efficiently computes @(X) - $(X'),
if one exists.

Constructing Kernels: Approach #2

New kernels can be constructed from other
kernels.

Suppose K., K5, K5 are kernels and f is any
function. Then the below are kernels:

K()_%r)-e,) = K1()-€,)?,) + Kz()-el)?,)

Verifying Kernels

A symmetric function K is a valid Rernel if and only
if the kernel matrix, K, is positive semi-definite for
any choice of data, X\, ..., X",

g%
4
Radial Basis Function Kernel

Often, though, we don’t design our own kernel.

A very popular choice: the radial basis function
(RBF) kernel (or Gaussian kernel):

-1%=%" 112

K(X,X')=e 202 =eVI*XI* wherey=1/(20%)

RBF Kernel Interpretation

-[1%-%"112 I
K()?,)’Z’) =e 202 = e‘V"X‘X !

Interpretation: RBF kernel measures similarity of
X and X’
Very similar: k(X

, X' 1
Very different: (X, X') =

) =
X')

Parameter o (or y) controls the scale
The larger o (smaller y), the wider the Guassian

RBF Kernel Interpretation

Recall that in kernel ridge regression / SVM, the
prediction is:

n
H(X) = > aK(XD, %)
i=1

Observations:
One parameter q; learned for each training point X
K(X%, X) will be = 0 for any X% far from X
H(X) is largely determined by the training points
closest to X

RBF Kernel Interpretation

RBF function placed at each training point.
H(X) is largely determined by training points closest to X

RBF Kernel Interpretation

An RBF Kernel predictor can be seen as a
generalization of the k-nearest neighbor rule

RBF Kernel Map

What ¢ is the RBF kernel a kernel for?

The mapping ¢(X) with entries of the form:

e I I2y Le—llillzﬁx,x.’ Le'||’?||2/2x-x-x ,
i \/E) \/? i7j"k

This is a mapping to an infinite dimensional
space!

Other Kernels

There are other interesting kernels useful for
specific domains.

Example: string kernels for text classification.
Dot product in space generated by all substrings.

Ds< /40A

& rbbab}ﬂ/s#fc ”70&0})? ¢ MAL/’NM Afﬁrmhg'

Lecture 8 Part 4
Demo: Kernel SVM

Demo

Train an RBF kernel SVM on the data below.

-2.0
-20 -15 -1.0 -05 00 05 10 15 20

Lo
0" v
Aside: Hyperparameter Selection

Two hyperparameters to specify:
Slack: C
Kernel width: y

Choose with grid search cross-validation

y=0.05

2.0

15

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-20 -15 -1.0 -05 00 05 10 15 20

y=0.18

2.0

15

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-20 -15 -1.0 -05 00 05 10 15 20

y=0.63

2.0

15

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-20 -15 -1.0 -05 00 05 10 15 20

y=2.16

2.0

15

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-20 -15 -1.0 -05 00 05 1.0 15 20

y=7.41

2.0

15

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-20 -15 -1.0 -05 00 05 1.0 15 20

_2-0 T T T T T
-20 -15 -1.0 -05 00 05 10 15 20

_2-0 T T T T T
-20 -15 -1.0 -05 00 05 10 15 20

y=1024.00

