Probatilistic Modeling $\&$ Machine Learning
Lecture 8 Part 1
High-Dimensional Feature Maps

Linear Prediction Rules

- We have seen how to fit linear functions:

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
$$

- Used for both regression and classification
- Limitation: regression function / decision boundary is a straight line / plane / hyperplane

Example

- The data below is not linearly separable
- No prediction function of the form $H\left(x_{1}, x_{2}\right)=w_{0}+w_{1} x_{1}+x_{2} x_{2}$ will work well

However...

- We have seen a way around this limitation: basis functions.
- Idea: design a function $\vec{\phi}(\vec{x})$ that maps data to a new space in which it is linearly separable.

Example

Consider the mapping $\vec{\phi}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2},\left|x_{1} x_{2}\right|\right)^{\top}$

Procedure

1. Define feature map $\vec{\phi}(\vec{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$

- $\vec{\phi}(\vec{x})=\left(\phi_{1}(\vec{x}), \ldots, \phi_{k}(\vec{x})\right)^{T}$
\Rightarrow Number of basis functions k can be $>$ or \leq than d

2. Map each training point to k-dimensional feature space: $\vec{x}^{(i)} \mapsto \vec{\phi}\left(\vec{x}^{(i)}\right)$
3. Learn a linear predictor in feature space:

$$
H(\vec{x})=w_{0}+w_{1} \phi_{1}(\vec{x})+\ldots+\phi_{k}(\vec{x})
$$

Procedure

Procedure

"DATA SPACE"

Example

- Use mapping $\vec{\phi}(\vec{x})=\left(x_{1}, x_{2},\left|x_{1} x_{2}\right|\right)^{T}$
- Decision boundary in "data space" no longer a straight line.

Exercise

Suppose $\vec{w}=(3,-1,2)^{T}$ defines a linear predictor in feature space and $\vec{\phi}=\left(x_{1}, x_{2},\left|x_{1} x_{2}\right|\right)^{T}$ is the mapping from "data space" to "feature space".

Let $\vec{x}=(2,-3)^{T}$ be a new point that needs to be classified. What is the predicted label?

Feature Maps

How do we choose $\vec{\phi}$?

- Hope: data is linearly separable in feature space
- Appears difficult to engineer $\vec{\phi}$ to satisfy this.
\downarrow Need to design $\vec{\phi}$ for each new data set?
- Goal: design a general feature map that is likely to make any data set linearly separable

High-Dimensional Feature Maps

- Observe: in our example, $\vec{\phi}$ mapped to space of larger dimension

High-Dimensional Feature Maps

- Intuition: each additional feature makes the data easier to classify.
- Intuition: a high-dimensional feature map is likely to make the data linearly separable.
- Idea: design very high-dimensional generic feature maps.

Example: Monomials

- Define a feature map $\vec{\phi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{6}$ as follows:

$$
\vec{\phi}(\vec{x})=\left(1, x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right)^{\top}
$$

- We fit a prediction function of the form:

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1} x_{2}+w_{4} x_{1}^{2}+w_{5} x_{2}^{2}
$$

Example: Monomials

Example: Monomials

- In general, define a feature map $\vec{\phi}$ to contain all monomials of the form:

$$
1, \quad x_{i}, \quad x_{i} x_{j}, \quad x_{i}^{2}
$$

- If $\vec{x} \in \mathbb{R}^{d}$, then $\vec{\phi}(\vec{x}) \in \mathbb{R}^{1+2 d+\left(\frac{d}{2}\right)}$.
- Example: if $\vec{x} \in \mathbb{R}^{50}$, then $\vec{\phi}(\vec{x}) \in \mathbb{R}^{1,326}$.

Example: Monomials

- Why stop there? Design $\vec{\phi}$ to contain all terms of form:

$$
1, \quad x_{i}, \quad x_{i} x_{j}, \quad x_{i}^{2}, \quad x_{i} x_{j} x_{k}, \quad x_{i}^{3}
$$

- If $\vec{x} \in \mathbb{R}^{d}$, then $\vec{\phi}(\vec{x}) \in \mathbb{R}^{1+3 d+\left(\frac{d}{2}\right)+\left(\frac{d}{3}\right)}$.
- Example: if $\vec{x} \in \mathbb{R}^{50}$, then $\vec{\phi}(\vec{x}) \in \mathbb{R}^{20,976}$!
- And so on...

Problem

- Mapping to very high dimensions is likely to make the data linearly separable.
- But fitting a linear prediction rule in high dimensions is costly.

$$
D S C 140 A
$$

Recap

- We can learn non-linear patterns by:

1. Defining a high-dimensional feature map, $\vec{\phi}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$
2. Mapping each training point to k-dimensional feature space: $\vec{x}^{(i)} \mapsto \vec{\phi}\left(\vec{x}^{(i)}\right)$
3. Training a linear predictor in feature space.

Problem

- Learning in a very high-dimensional space can be costly, or even infeasible.

The Trick

We can train many linear predictors as if we have mapped data to feature space, without actually doing so.

Idea

- In many algorithms, when $\vec{\phi}(\vec{x})$ appears, it always appears as part of a dot product:

$$
\vec{\phi}(\vec{x}) \cdot \vec{\phi}\left(\vec{x}^{\prime}\right)
$$

- To compute, we could map and do dot product in feature space.
- But this is costly!

Kernels

- But some $\vec{\phi}$ are special; for them, there is a function κ satisfying:

$$
\kappa\left(\vec{x}, \vec{x}^{\prime}\right)=\vec{\phi}(\vec{x}) \cdot \vec{\phi}\left(\vec{x}^{\prime}\right)
$$

- Crucially, computing к does not require mapping to feature space!
- K is called a kernel function.

The Kernel Trick

- In many algorithms, when $\vec{\phi}(\vec{x})$ appears, it always appears as part of a dot product of the form:

$$
\vec{\phi}(\vec{x}) \cdot \vec{\phi}\left(\vec{x}^{\prime}\right)
$$

- By replacing all instances of $\vec{\phi}(\vec{x}) \cdot \vec{\phi}\left(\vec{x}^{\prime}\right)$ with $K\left(\vec{x}, \vec{x}^{\prime}\right)$, we kernelize the algorithm; avoid mapping to feature space.
- This is called the kernel trick.

Example: Polynomial Kernel

- Define the feature map:

$$
\vec{\phi}(\vec{x})=\left(1, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{3}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3}, \sqrt{2} x_{2} x_{3}\right)^{\top}
$$

$k\left(\vec{x}, \vec{x}^{\prime}\right)=\left(1+\vec{x} \cdot \vec{x}^{\prime}\right)^{2}$ is a kernel for this $\vec{\phi}$.
That is, $k\left(\vec{x}, \vec{x}^{\prime}\right)=\vec{\phi}(\vec{x}) \cdot \vec{\phi}\left(\vec{x}^{\prime}\right)$

- Called the polynomial kernel ${ }^{1}$
${ }^{1}$ In general, $\kappa\left(\vec{x}, \vec{x}^{\prime}\right)=\left(1+\vec{x} \cdot \vec{x}^{\prime}\right)^{k}$ is kernel for k-order monomial mappings

Kernelized Algorithms

- Only certain mappings have efficiently-computed kernels.
- Only certain learning algorithms can be kernelized.
- All of the linear algorithms we've learned can. - Least squares, perceptron, SVMs, etc.

Kernel Ridge Regression

- Let's kernelize ridge regression.
- First: verify that all instances of $\vec{\phi}(\vec{x})$ appear as part of a dot product: $\vec{\phi}(\vec{x}) \cdot \vec{\phi}\left(\vec{x}^{\prime}\right)$

Kernel Ridge Regression

- Suppose $\vec{\phi}(\vec{x})$ is a feature map with kernel k.
- To train a ridge regressor in feature space, we'd solve

$$
\underset{\vec{w}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(\vec{\phi}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right)^{2}+\lambda\|\vec{w}\|^{2}
$$

- In matrix-vector form, where Φ is the design matrix:

$$
\underset{\vec{w}}{\arg \min } \frac{1}{n}\|\Phi \vec{w}-\vec{y}\|^{2}+\lambda \vec{w}^{\top} \vec{w}
$$

Fact

- The solution w^{*} is a linear combination of $\vec{\phi}\left(\vec{x}^{(i)}\right)$:

$$
\vec{w}^{*}=\sum_{i=1}^{n} \alpha_{i} \vec{\phi}\left(\vec{x}^{(i)}\right)
$$

- Why? The gradient of the regularized risk is:

$$
\frac{2}{n} \sum_{i=1}^{n}\left(\vec{\phi}\left(\vec{x}^{(i)}\right) \cdot \vec{w}-y_{i}\right) \vec{\phi}\left(\vec{x}^{(i)}\right)+2 \lambda \vec{w}
$$

- Setting to zero, solving for \vec{w} gives:

$$
\vec{w}^{*}=\sum_{i=1}^{n} \underbrace{\left.\left(-\frac{1}{n \lambda} \vec{\phi} \vec{x}^{(i)}\right) \cdot \vec{w}^{*}-y_{i}\right)}_{a_{i}} \vec{\phi} \vec{x}^{(i)})
$$

Fact

- The solution w^{*} is a linear combination of $\vec{\phi}\left(\vec{x}^{(i)}\right)$:

$$
\vec{w}^{*}=\sum_{i=1}^{n} \alpha_{i} \vec{\phi}\left(\vec{x}^{(i)}\right)
$$

- In matrix-vector form, where $\vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\top}$:

$$
\vec{w}^{*}=\Phi^{\top} \vec{\alpha}
$$

Dual Problem

- Using the fact that $\vec{w}^{*}=\sum_{i=1}^{n} \alpha_{i} \vec{\phi}\left(\vec{x}^{(i)}\right)=\Phi^{\top} \vec{\alpha}$ for some $\vec{\alpha}$, the problem:

$$
\underset{\vec{w}}{\arg \min } \frac{1}{n}\|\Phi \vec{w}-\vec{y}\|^{2}+\lambda \vec{w}^{\top} \vec{w}
$$

is equivalent to the dual problem:

$$
\underset{\vec{\alpha}}{\arg \min } \frac{1}{n}\left\|\Phi \Phi^{\top} \vec{\alpha}-\vec{y}\right\|^{2}+\lambda \vec{\alpha}^{\top} \Phi \Phi^{\top} \vec{\alpha}
$$

Kernelizing

- Where does $\vec{\phi}(\vec{x})$ appear in this problem?

$$
\underset{\vec{\alpha}}{\arg \min } \frac{1}{n}\left\|\Phi \Phi^{\top} \vec{\alpha}-\vec{y}\right\|^{2}+\lambda \vec{\alpha}^{\top} \Phi \Phi^{\top} \vec{\alpha}
$$

- Inside Φ :

$$
\Phi=\left(\begin{array}{l}
\vec{\phi}\left(\vec{x}^{(1)}\right) \\
\vec{\phi}\left(\vec{x}^{(2)}\right) \\
\vec{\phi}\left(\vec{x}^{(n)}\right) \\
\vdots
\end{array}\right)
$$

Exercise

Argue that the (i, j) entry of $\Phi \Phi^{\top}$ is equal to $\kappa\left(\vec{x}^{(i)}, \vec{x}^{(j)}\right)$.

$$
\Phi=\left(\begin{array}{l}
\vec{\phi}\left(\vec{x}^{(1)}\right) \longrightarrow \\
\vec{\phi}\left(\vec{x}^{(2)}\right) \longrightarrow \\
\vec{\phi}\left(\vec{x}^{(n)}\right) \longrightarrow
\end{array}\right)
$$

Kernelizing

- The (i, j) entry of $\Phi \Phi^{T}$ is $\vec{\phi}\left(\vec{x}^{(i)}\right) \cdot \vec{\phi}\left(\vec{x}^{(j)}\right)=\kappa\left(\vec{x}^{(i)}, \vec{x}^{(j)}\right)$

$$
\Phi \Phi^{T}=\underbrace{\left(\begin{array}{cccc}
\kappa\left(\vec{x}^{(1)}, \vec{x}^{(1)}\right) & \kappa\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right) & \cdots & \kappa\left(\vec{x}^{(1)}, \vec{x}^{(n)}\right) \\
\kappa\left(\vec{x}^{(2)}, \vec{x}^{(1)}\right) & \kappa\left(\vec{x}^{(2)}, \vec{x}^{(2)}\right) & \cdots & \kappa\left(\vec{x}^{(2)}, \vec{x}^{(n)}\right) \\
\vdots \vdots\left(\vec{x}^{(n)}, \vec{x}^{(1)}\right) & \kappa\left(\vec{x}^{(n)}, \vec{x}^{(2)}\right) & \cdots & \kappa\left(\vec{x}^{(n)}, \vec{x}^{(n)}\right)
\end{array}\right)}_{K}
$$

- K is called the Kernel matrix (or Gram matrix).

Kernel Ridge Regression

- The dual problem becomes:

$$
\underset{\vec{\alpha}}{\arg \min } \frac{1}{n}\|K \vec{\alpha}-\vec{y}\|^{2}+\lambda \vec{\alpha}^{\top} K \vec{\alpha}
$$

- Exact solution:

$$
\vec{\alpha}^{*}=(K+n \lambda I)^{-1} \vec{y}
$$

- This is kernel ridge regression.

Kernelization

- Observe: we train linear predictor in feature space without actually mapping to feature space:

$$
\vec{\alpha}^{*}=(K+n \lambda I)^{-1} \vec{y}
$$

Making Predictions

- To predict on a new point \vec{x}, normally: $H(\vec{x})=\vec{w}^{*} \cdot \vec{\phi}(\vec{x})$.
- How to do this without actually mapping?
- Recall: $w^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} \vec{\phi}\left(\vec{x}^{(i)}\right)$
- So:

$$
H(\vec{x})=\sum_{i=1}^{n} \alpha_{i}^{*} \vec{\phi}\left(\vec{x}^{(i)}\right) \cdot \vec{\phi}(\vec{x})=\sum_{i=1}^{n} \alpha_{i}^{*} K\left(\vec{x}^{(i)}, \vec{x}\right)
$$

Making Predictions

- To make a prediction on a new point:

$$
H(\vec{x})=\sum_{i=1}^{n} \alpha_{i}^{*} K\left(\vec{x}^{(i)}, \vec{x}\right)
$$

- No need to map to feature space.
- Interpretation: A weighted sum of kernel evaluations.

Procedure: Kernel Ridge Regression

1. Pick a kernel function, κ.
2. Solve linear system: $\vec{\alpha}^{*}=(K+n \lambda I)^{-1} \vec{y}$
3. To make new prediction, $H(\vec{x})=\sum_{i=1}^{n} \alpha_{i}^{*} \kappa\left(\vec{x}^{(i)}, \vec{x}\right)$

Kernel Soft-SVM

- Soft-SVM can also be kernelized.

1. Pick a kernel function, κ.
2. Solve dual problem (e.g., with SGD):

$$
\underset{\vec{\alpha}}{\arg \min }\left(\lambda \vec{\alpha}^{\top} K \vec{\alpha}+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}(K \vec{\alpha})_{i}\right\}\right)
$$

3. To make new prediction, $H(\vec{x})=\sum_{i \in S} \alpha_{i}^{*} k\left(\vec{x}^{(i)}, \vec{x}\right)$
\downarrow Where S is the set of indices of support vectors.

Kernelization Downsides

- Often, training involves the $n \times n$ kernel matrix.
- Can be very large!
- There are ways to mitigate this:
- Small-batch stochastic gradient descent.
- Nyström method.

$$
D S C 140 A
$$

Valid Kernels

- The first step in kernel learning is to pick a kernel function, κ.
- To be a valid kernel, must compute the dot product w.r.t., some mapping, $\vec{\phi}(\vec{x})$.
- That is, it must be that

$$
\kappa\left(\vec{x}, \vec{x}^{\prime}\right)=\vec{\phi}(\vec{x}) \cdot \vec{\phi}\left(\vec{x}^{\prime}\right)
$$

for some $\vec{\phi}$.

Constructing Kernels: Approach \#1

- How do we come up with valid kernel functions?
- Approach \#1:

1. Start by picking $\vec{\phi}$
2. Find a function κ that efficiently computes $\vec{\phi}(\vec{x}) \cdot \vec{\phi}\left(\vec{x}^{\prime}\right)$, if one exists.

Constructing Kernels: Approach \#2

- New kernels can be constructed from other kernels.
- Suppose $\kappa_{1}, \kappa_{2}, \kappa_{3}$ are kernels and f is any function. Then the below are kernels:

$$
\begin{aligned}
& k\left(\vec{x}, \vec{x}^{\prime}\right)=\kappa_{1}\left(\vec{x}, \vec{x}^{\prime}\right)+\kappa_{2}\left(\vec{x}, \vec{x}^{\prime}\right) \\
& k\left(\vec{x}, \vec{x}^{\prime}\right)=\kappa_{1}\left(\vec{x}, \vec{x}^{\prime}\right) \times \kappa_{2}\left(\vec{x}, \vec{x}^{\prime}\right) \\
& k\left(\vec{x}, \vec{x}^{\prime}\right)=\kappa_{3}\left(\vec{\phi}(\vec{x}), \vec{\phi}\left(\vec{x}^{\prime}\right)\right) \\
& \kappa\left(\vec{x}, \vec{x}^{\prime}\right)=f(\vec{x}) \kappa_{1}\left(\vec{x}, \vec{x}^{\prime}\right) f\left(\vec{x}^{\prime}\right)
\end{aligned}
$$

Verifying Kernels

Theorem

A symmetric function κ is a valid kernel if and only if the kernel matrix, K, is positive semi-definite for any choice of data, $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$.

Radial Basis Function Kernel

- Often, though, we don't design our own kernel.
- A very popular choice: the radial basis function (RBF) kernel (or Gaussian kernel):

$$
\kappa\left(\vec{x}, \vec{x}^{\prime}\right)=e^{\frac{-\left\|\vec{x}-x^{\prime}\right\|^{2}}{2 \sigma^{2}}}=e^{-\gamma\left\|\vec{x}-\vec{x}^{\prime}\right\|^{2}}
$$

$$
\text { where } \gamma=1 /\left(2 \sigma^{2}\right)
$$

RBF Kernel Interpretation

$$
K\left(\vec{x}, \vec{x}^{\prime}\right)=e^{\frac{-\left\|\vec{x}-x^{\prime}\right\|^{2}}{2 \sigma^{2}}}=e^{-y\left\|\vec{x}-x^{\prime}\right\|^{2}}
$$

- Interpretation: RBF kernel measures similarity of \vec{x} and \vec{x}^{\prime}
- Very similar: $k\left(\vec{x}, \vec{x}^{\prime}\right) \approx 1$.
- Very different: $\kappa\left(\vec{x}, \vec{x}^{\prime}\right) \approx 0$.
- Parameter σ (or γ) controls the scale
- The larger σ (smaller γ), the wider the Guassian

RBF Kernel Interpretation

- Recall that in kernel ridge regression / SVM, the prediction is:

$$
H(\vec{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\vec{x}^{(i)}, \vec{x}\right)
$$

- Observations:
\Rightarrow One parameter α_{i} learned for each training point $\vec{x}^{(i)}$
- $\kappa\left(\vec{x}^{(i)}, \vec{x}\right)$ will be ≈ 0 for any $\vec{x}^{(i)}$ far from \vec{x}
$\Rightarrow H(\vec{x})$ is largely determined by the training points closest to \vec{x}

RBF Kernel Interpretation

- RBF function placed at each training point.
- $H(\vec{x})$ is largely determined by training points closest to \vec{x}

RBF Kernel Interpretation

- An RBF Kernel predictor can be seen as a generalization of the k-nearest neighbor rule

RBF Kernel Map

- What ϕ is the RBF kernel a kernel for?
- The mapping $\vec{\phi}(\vec{x})$ with entries of the form:

$$
e^{-\|\ddot{x}\|^{2} / 2} x_{i}, \quad \frac{1}{\sqrt{2}!} e^{-\|\tilde{\|}\|^{2} / 2 x_{i} x_{j}}, \quad \frac{1}{\sqrt{3!}} e^{-\|\ddot{x}\|^{2} / 2} x_{i} x_{j} x_{k}, \quad \cdots
$$

- This is a mapping to an infinite dimensional Hilbert space!

Other Kernels

- There are other interesting kernels useful for specific domains.
- Example: string kernels for text classification.

D Dot product in space generated by all substrings.

$$
D S C 140 A
$$

Demo

- Train an RBF kernel SVM on the data below.

Aside: Hyperparameter Selection

- Two hyperparameters to specify:
- Slack: C
- Kernel width: γ
- Choose with grid search cross-validation

