DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 1

High-Dimensional Feature Maps

Linear Prediction Rules

We have seen how to fit linear functions:

$$H(\vec{x}) = W_0 + W_1 X_1 + ... + W_d X_d$$

- Used for both regression and classification
- Limitation: regression function / decision boundary is a straight line / plane / hyperplane

Example

- ► The data below is not **linearly separable**
- No prediction function of the form $H(x_1, x_2) = w_0 + w_1x_1 + x_2x_2$ will work well

However...

- We have seen a way around this limitation: basis functions.
- ▶ **Idea:** design a function $\vec{\phi}(\vec{x})$ that maps data to a new space in which it is **linearly separable**.

Example

► Consider the mapping $\vec{\phi}(x_1, x_2) = (x_1, x_2, |x_1 x_2|)^T$

Procedure

- 1. Define feature map $\vec{\phi}(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^k$

 - Number of basis functions k can be > or ≤ than d

- 2. Map each training point to k-dimensional feature space: $\vec{x}^{(i)} \mapsto \vec{\phi}(\vec{x}^{(i)})$
- 3. Learn a linear predictor in feature space:

$$H(\vec{x}) = W_0 + W_1 \phi_1(\vec{x}) + ... + \phi_k(\vec{x})$$

Procedure

Procedure

Example

- Use mapping $\vec{\phi}(\vec{x}) = (x_1, x_2, |x_1 x_2|)^T$
- Decision boundary in "data space" no longer a straight line.

Exercise

Suppose $\vec{w} = (3, -1, 2)^T$ defines a linear predictor in feature space and $\vec{\phi} = (x_1, x_2, |x_1x_2|)^T$ is the mapping from "data space" to "feature space".

Let $\vec{x} = (2, -3)^T$ be a new point that needs to be classified. What is the predicted label?

Feature Maps

- ightharpoonup How do we choose $\vec{\phi}$?
- ► **Hope:** data is linearly separable in feature space
- ightharpoonup Appears difficult to engineer $\vec{\phi}$ to satisfy this.
 - Need to design $\vec{\phi}$ for each new data set?
- ► **Goal:** design a general feature map that is likely to make any data set linearly separable

High-Dimensional Feature Maps

Observe: in our example, $\vec{\phi}$ mapped to space of larger dimension

High-Dimensional Feature Maps

- Intuition: each additional feature makes the data easier to classify.
- Intuition: a high-dimensional feature map is likely to make the data linearly separable.
- ► **Idea:** design *very* high-dimensional generic feature maps.

▶ Define a feature map $\vec{\phi}$: $\mathbb{R}^2 \to \mathbb{R}^6$ as follows:

$$\vec{\phi}(\vec{x}) = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)^T$$

We fit a prediction function of the form:

$$H(\vec{x}) = W_0 + W_1 X_1 + W_2 X_2 + W_3 X_1 X_2 + W_4 X_1^2 + W_5 X_2^2$$

In general, define a feature map $\vec{\phi}$ to contain all **monomials** of the form:

$$1, \quad x_i, \quad x_i x_j, \quad x_i^2$$

- If $\vec{x} \in \mathbb{R}^d$, then $\vec{\phi}(\vec{x}) \in \mathbb{R}^{1+2d+\binom{d}{2}}$.
- **Example:** if $\vec{x} \in \mathbb{R}^{50}$, then $\vec{\phi}(\vec{x}) \in \mathbb{R}^{1,326}$.

Mhy stop there? Design $\vec{\phi}$ to contain all terms of form:

1,
$$x_i$$
, $x_i x_j$, x_i^2 , $x_i x_j x_k$, x_i^3

- If $\vec{x} \in \mathbb{R}^d$, then $\vec{\phi}(\vec{x}) \in \mathbb{R}^{1+3d+\binom{d}{2}+\binom{d}{3}}$.
- **Example:** if $\vec{x} \in \mathbb{R}^{50}$, then $\vec{\phi}(\vec{x}) \in \mathbb{R}^{20,976}$!
- And so on...

Problem

- Mapping to very high dimensions is likely to make the data linearly separable.
- But fitting a linear prediction rule in high dimensions is costly.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 2

The Kernel Trick

Recap

- We can learn non-linear patterns by:
 - 1. Defining a high-dimensional feature map, $\vec{\phi}: \mathbb{R}^d \to \mathbb{R}^k$
 - 2. Mapping each training point to k-dimensional feature space: $\vec{x}^{(i)} \mapsto \vec{\phi}(\vec{x}^{(i)})$
 - 3. Training a linear predictor in feature space.

Problem

Learning in a very high-dimensional space can be costly, or even infeasible.

The Trick

We can train many linear predictors as if we have mapped data to feature space, without actually doing so.

Idea

In many algorithms, when $\vec{\phi}(\vec{x})$ appears, it always appears as part of a dot product:

$$\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}')$$

- To compute, we could map and do dot product in feature space.
- But this is costly!

Kernels

But some $\vec{\phi}$ are special; for them, there is a function κ satisfying:

$$\kappa(\vec{x}, \vec{x}') = \vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}')$$

- Crucially, computing κ does not require mapping to feature space!
- \triangleright κ is called a **kernel** function.

The Kernel Trick

In many algorithms, when $\vec{\phi}(\vec{x})$ appears, it always appears as part of a dot product of the form:

$$\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}')$$

- By replacing all instances of $\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}')$ with $\kappa(\vec{x}, \vec{x}')$, we **kernelize** the algorithm; avoid mapping to feature space.
- ► This is called the **kernel trick**.

Example: Polynomial Kernel

Define the feature map:

$$\vec{\phi}(\vec{x}) = (1, x_1^2, x_2^2, x_3^2, \sqrt{2} \, x_1, \sqrt{2} \, x_2, \sqrt{2} \, x_3, \sqrt{2} \, x_1 x_2, \sqrt{2} \, x_1 x_3, \sqrt{2} \, x_2 x_3)^{\mathsf{\scriptscriptstyle T}}$$

- $\kappa(\vec{x}, \vec{x}') = (1 + \vec{x} \cdot \vec{x}')^2$ is a kernel for this $\vec{\phi}$.
 - ► That is, $\kappa(\vec{x}, \vec{x}') = \vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}')$
- ► Called the polynomial kernel¹

¹In general, $\kappa(\vec{x}, \vec{x}') = (1 + \vec{x} \cdot \vec{x}')^k$ is kernel for k-order monomial mappings

Kernelized Algorithms

Only certain mappings have efficiently-computed kernels.

Only certain learning algorithms can be kernelized.

- ▶ **All** of the linear algorithms we've learned can.
 - Least squares, perceptron, SVMs, etc.

Kernel Ridge Regression

- Let's kernelize ridge regression.
- First: verify that all instances of $\vec{\phi}(\vec{x})$ appear as part of a dot product: $\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}')$

Kernel Ridge Regression

- ► Suppose $\vec{\phi}(\vec{x})$ is a feature map with kernel k.
- To train a ridge regressor in feature space, we'd solve

$$\arg\min_{\vec{w}} \frac{1}{n} \sum_{i=1}^{n} \left(\vec{\phi}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right)^2 + \lambda \|\vec{w}\|^2$$

In matrix-vector form, where Φ is the design matrix:

$$\underset{\vec{x}}{\text{arg min}} \frac{1}{n} \| \Phi \vec{w} - \vec{y} \|^2 + \lambda \vec{w}^T \vec{w}$$

Fact

The solution w^* is a linear combination of $\vec{\phi}(\vec{x}^{(i)})$:

$$\vec{w}^* = \sum_{i=1}^n \alpha_i \vec{\phi}(\vec{x}^{(i)})$$

▶ Why? The gradient of the regularized risk is:

$$\frac{2}{n} \sum_{i=1}^{n} \left(\vec{\phi}(\vec{x}^{(i)}) \cdot \vec{w} - y_i \right) \vec{\phi}(\vec{x}^{(i)}) + 2\lambda \vec{w}$$

 \triangleright Setting to zero, solving for \vec{w} gives:

$$\vec{w}^* = \sum_{i=1}^n \underbrace{\left(-\frac{1}{n\lambda} \vec{\phi}(\vec{x}^{(i)}) \cdot \vec{w}^* - y_i\right)}_{\alpha_i} \vec{\phi}(\vec{x}^{(i)})$$

Fact

► The solution w^* is a linear combination of $\vec{\phi}(\vec{x}^{(i)})$:

$$\vec{w}^* = \sum_{i=1}^n \alpha_i \vec{\phi}(\vec{x}^{(i)})$$

In matrix-vector form, where $\vec{\alpha} = (\alpha_1, ..., \alpha_n)^T$:

$$\vec{w}^* = \Phi^T \vec{\alpha}$$

Dual Problem

Using the fact that $\vec{w}^* = \sum_{i=1}^n \alpha_i \vec{\phi}(\vec{x}^{(i)}) = \Phi^T \vec{\alpha}$ for some $\vec{\alpha}$, the problem:

$$\arg\min_{\vec{w}} \frac{1}{n} \|\Phi \vec{w} - \vec{y}\|^2 + \lambda \vec{w}^T \vec{w}$$

is equivalent to the dual problem:

$$\underset{\vec{\alpha}}{\text{arg min}} \frac{1}{n} \| \Phi \Phi^T \vec{\alpha} - \vec{y} \|^2 + \lambda \vec{\alpha}^T \Phi \Phi^T \vec{\alpha}$$

Kernelizing

Mhere does $\vec{\phi}(\vec{x})$ appear in this problem?

$$\underset{\vec{\alpha}}{\text{arg min }} \frac{1}{n} \| \Phi \Phi^T \vec{\alpha} - \vec{y} \|^2 + \lambda \vec{\alpha}^T \Phi \Phi^T \vec{\alpha}$$

► Inside Φ:

Exercise

Argue that the (i, j) entry of $\Phi\Phi^{T}$ is equal to $\kappa(\vec{x}^{(i)}, \vec{x}^{(j)})$.

$$\Phi = \begin{pmatrix} \vec{\phi}(\vec{x}^{(1)}) & \longrightarrow \\ \vec{\phi}(\vec{x}^{(2)}) & \longrightarrow \\ \vdots & \vdots & \longrightarrow \\ \vec{\phi}(\vec{x}^{(n)}) & \longrightarrow \\ \end{pmatrix}$$

Kernelizing

The (i,j) entry of $\Phi\Phi^T$ is $\vec{\phi}(\vec{x}^{(i)}) \cdot \vec{\phi}(\vec{x}^{(j)}) = \kappa(\vec{x}^{(i)}, \vec{x}^{(j)})$

$$\Phi\Phi^{T} = \underbrace{\begin{pmatrix} \kappa(\vec{x}^{(1)}, \vec{x}^{(1)}) & \kappa(\vec{x}^{(1)}, \vec{x}^{(2)}) & \cdots & \kappa(\vec{x}^{(1)}, \vec{x}^{(n)}) \\ \kappa(\vec{x}^{(2)}, \vec{x}^{(1)}) & \kappa(\vec{x}^{(2)}, \vec{x}^{(2)}) & \cdots & \kappa(\vec{x}^{(2)}, \vec{x}^{(n)}) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(\vec{x}^{(n)}, \vec{x}^{(1)}) & \kappa(\vec{x}^{(n)}, \vec{x}^{(2)}) & \cdots & \kappa(\vec{x}^{(n)}, \vec{x}^{(n)}) \end{pmatrix}}$$

K is called the Kernel matrix (or Gram matrix).

Kernel Ridge Regression

► The dual problem becomes:

$$\arg\min_{\vec{\alpha}} \frac{1}{n} ||K\vec{\alpha} - \vec{y}||^2 + \lambda \vec{\alpha}^T K \vec{\alpha}$$

Exact solution:

$$\vec{\alpha}^* = (K + n\lambda I)^{-1} \vec{y}$$

► This is **kernel ridge regression**.

Kernelization

► **Observe:** we train linear predictor in feature space without actually mapping to feature space:

$$\vec{\alpha}^* = (K + n\lambda I)^{-1} \vec{y}$$

Making Predictions

- To predict on a new point \vec{x} , normally: $H(\vec{x}) = \vec{w}^* \cdot \vec{\phi}(\vec{x})$.
- ► How to do this without actually mapping?
- ► Recall: $w^* = \sum_{i=1}^n \alpha_i^* \vec{\phi}(\vec{x}^{(i)})$
- ► So:

$$H(\vec{x}) = \sum_{i=1}^{n} \alpha_{i}^{*} \vec{\phi}(\vec{x}^{(i)}) \cdot \vec{\phi}(\vec{x}) = \sum_{i=1}^{n} \alpha_{i}^{*} \kappa(\vec{x}^{(i)}, \vec{x})$$

Making Predictions

► To make a prediction on a new point:

$$H(\vec{x}) = \sum_{i=1}^{n} \alpha_i^* \kappa(\vec{x}^{(i)}, \vec{x})$$

- No need to map to feature space.
- ► **Interpretation:** A weighted sum of kernel evaluations.

Procedure: Kernel Ridge Regression

- 1. Pick a kernel function, κ.
- 2. Solve linear system: $\vec{\alpha}^* = (K + n\lambda I)^{-1} \vec{v}$
- 3. To make new prediction, $H(\vec{x}) = \sum_{i=1}^{n} \alpha_i^* \kappa(\vec{x}^{(i)}, \vec{x})$

Kernel Soft-SVM

- ► Soft-SVM can also be **kernelized**.
- 1. Pick a kernel function, κ.
- 2. Solve dual problem (e.g., with SGD):

$$\arg\min_{\vec{\alpha}} \left(\lambda \vec{\alpha}^T K \vec{\alpha} + \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i (K \vec{\alpha})_i\} \right)$$

3. To make new prediction, $H(\vec{x}) = \sum_{i \in S} \alpha_i^* \kappa(\vec{x}^{(i)}, \vec{x})$ • Where S is the set of indices of support vectors.

Kernelization Downsides

- \triangleright Often, training involves the $n \times n$ kernel matrix.
 - Can be very large!
- There are ways to mitigate this:
 - Small-batch stochastic gradient descent.
 - Nyström method.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 3

Kernel Functions

Valid Kernels

- The first step in kernel learning is to pick a kernel function, κ.
- To be a valid kernel, must compute the dot product w.r.t., some mapping, $\vec{\phi}(\vec{x})$.
- That is, it must be that

$$\kappa(\vec{x}, \vec{x}') = \vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}')$$

for some $\vec{\phi}$.

Constructing Kernels: Approach #1

How do we come up with valid kernel functions?

- Approach #1:
 - 1. Start by picking $\vec{\phi}$
 - 2. Find a function κ that efficiently computes $\vec{\phi}(\vec{x}) \cdot \vec{\phi}(\vec{x}')$, if one exists.

Constructing Kernels: Approach #2

- New kernels can be constructed from other kernels.
- Suppose $\kappa_1, \kappa_2, \kappa_3$ are kernels and f is any function. Then the below are kernels:

$$\qquad \qquad \kappa(\vec{x},\vec{x}') = \kappa_1(\vec{x},\vec{x}') + \kappa_2(\vec{x},\vec{x}')$$

$$\qquad \kappa(\vec{x},\vec{x}') = \kappa_1(\vec{x},\vec{x}') \times \kappa_2(\vec{x},\vec{x}')$$

$$\qquad \kappa(\vec{x}, \vec{x}') = \kappa_3(\vec{\phi}(\vec{x}), \vec{\phi}(\vec{x}'))$$

$$\kappa(\vec{x}, \vec{x}') = f(\vec{x}) \kappa_1(\vec{x}, \vec{x}') f(\vec{x}')$$

Verifying Kernels

Theorem

A symmetric function κ is a valid kernel if and only if the kernel matrix, K, is positive semi-definite for any choice of data, $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}$.

Radial Basis Function Kernel

- Often, though, we don't design our own kernel.
- ► A very popular choice: the radial basis function (RBF) kernel (or Gaussian kernel):

$$\kappa(\vec{x}, \vec{x}') = e^{\frac{-\|\vec{x}-\vec{x}'\|^2}{2\sigma^2}} = e^{-\gamma \|\vec{x}-\vec{x}'\|^2}$$
 where $\gamma = 1/(2\sigma^2)$

$$\kappa(\vec{x}, \vec{x}') = e^{\frac{-\|\vec{x}-\vec{x}'\|^2}{2\sigma^2}} = e^{-\gamma \|\vec{x}-\vec{x}'\|^2}$$

- Interpretation: RBF kernel measures similarity of \vec{x} and \vec{x}'
 - ► Very similar: $\kappa(\vec{x}, \vec{x}') \approx 1$.
 - ► Very different: $\kappa(\vec{x}, \vec{x}') \approx 0$.
- Parameter σ (or γ) controls the scale
 - \triangleright The larger σ (smaller y), the wider the Guassian

Recall that in kernel ridge regression / SVM, the prediction is:

$$H(\vec{x}) = \sum_{i=1}^{n} \alpha_i \kappa(\vec{x}^{(i)}, \vec{x})$$

- Observations:
 - One parameter α_i learned for **each** training point $\vec{x}^{(i)}$
 - ► $\kappa(\vec{x}^{(i)}, \vec{x})$ will be ≈ 0 for any $\vec{x}^{(i)}$ far from \vec{x}
 - \vdash $H(\vec{x})$ is largely determined by the training points closest to \vec{x}

- RBF function placed at each training point.
- \vdash $H(\vec{x})$ is largely determined by training points closest to \vec{x}

An RBF Kernel predictor can be seen as a generalization of the k-nearest neighbor rule

RBF Kernel Map

- \triangleright What ϕ is the RBF kernel a kernel for?
- The mapping $\vec{\phi}(\vec{x})$ with entries of the form:

$$e^{-\|\vec{x}\|^2/2}x_i$$
, $\frac{1}{\sqrt{2!}}e^{-\|\vec{x}\|^2/2}x_ix_j$, $\frac{1}{\sqrt{3!}}e^{-\|\vec{x}\|^2/2}x_ix_jx_k$, ...

► This is a mapping to an **infinite dimensional** Hilbert space!

Other Kernels

- ► There are other interesting kernels useful for specific domains.
- **Example:** string kernels for text classification.
 - Dot product in space generated by all substrings.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 4

Demo: Kernel SVM

Demo

► Train an RBF kernel SVM on the data below.

Aside: Hyperparameter Selection

- Two hyperparameters to specify:
 - ► Slack: C
 - Kernel width: y
- Choose with grid search cross-validation

