
Lecture 8 | Part 1

High-Dimensional Feature Maps



Linear Prediction Rules

▶ We have seen how to fit linear functions:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑

▶ Used for both regression and classification

▶ Limitation: regression function / decision
boundary is a straight line / plane / hyperplane



Example
▶ The data below is not linearly separable

▶ No prediction function of the form
𝐻(𝑥1, 𝑥2) = 𝑤0 + 𝑤1𝑥1 + 𝑥2𝑥2 will work well
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However...

▶ We have seen a way around this limitation: basis
functions.

▶ Idea: design a function 𝜙⃗( ⃗𝑥) that maps data to a
new space in which it is linearly separable.



Example

▶ Consider the mapping 𝜙⃗(𝑥1, 𝑥2) = (𝑥1, 𝑥2, |𝑥1𝑥2|)𝑇
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Procedure

1. Define feature map 𝜙⃗( ⃗𝑥) ∶ ℝ𝑑 → ℝ𝑘
▶ 𝜙⃗( ⃗𝑥) = (𝜙1( ⃗𝑥), … , 𝜙𝑘( ⃗𝑥))𝑇
▶ Number of basis functions 𝑘 can be > or ≤ than 𝑑

2. Map each training point to 𝑘-dimensional
feature space: ⃗𝑥(𝑖) ↦ 𝜙⃗( ⃗𝑥(𝑖))

3. Learn a linear predictor in feature space:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜙1( ⃗𝑥) + … + 𝜙𝑘( ⃗𝑥)



Procedure



Procedure



Example
▶ Use mapping 𝜙⃗( ⃗𝑥) = (𝑥1, 𝑥2, |𝑥1𝑥2|)𝑇

▶ Decision boundary in “data space” no longer a
straight line.
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Exercise

Suppose 𝑤⃗ = (3, −1, 2)𝑇 defines a linear predictor in
feature space and 𝜙⃗ = (𝑥1, 𝑥2, |𝑥1𝑥2|)𝑇 is the map-
ping from “data space” to “feature space”.

Let ⃗𝑥 = (2, −3)𝑇 be a new point that needs to be
classified. What is the predicted label?



Feature Maps

▶ How do we choose 𝜙⃗?

▶ Hope: data is linearly separable in feature space

▶ Appears difficult to engineer 𝜙⃗ to satisfy this.
▶ Need to design 𝜙⃗ for each new data set?

▶ Goal: design a general feature map that is likely
to make any data set linearly separable



High-Dimensional Feature Maps

▶ Observe: in our example, 𝜙⃗ mapped to space of
larger dimension
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High-Dimensional Feature Maps

▶ Intuition: each additional feature makes the
data easier to classify.

▶ Intuition: a high-dimensional feature map is
likely to make the data linearly separable.

▶ Idea: design very high-dimensional generic
feature maps.



Example: Monomials

▶ Define a feature map 𝜙⃗ ∶ ℝ2 → ℝ6 as follows:

𝜙⃗( ⃗𝑥) = (1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥21 , 𝑥22)𝑇

▶ We fit a prediction function of the form:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥21 + 𝑤5𝑥22



Example: Monomials
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Example: Monomials

▶ In general, define a feature map 𝜙⃗ to contain all
monomials of the form:

1, 𝑥𝑖, 𝑥𝑖𝑥𝑗, 𝑥2𝑖

▶ If ⃗𝑥 ∈ ℝ𝑑, then 𝜙⃗( ⃗𝑥) ∈ ℝ1+2𝑑+(
𝑑
2).

▶ Example: if ⃗𝑥 ∈ ℝ50, then 𝜙⃗( ⃗𝑥) ∈ ℝ1,326.



Example: Monomials

▶ Why stop there? Design 𝜙⃗ to contain all terms of
form:

1, 𝑥𝑖, 𝑥𝑖𝑥𝑗, 𝑥2𝑖 , 𝑥𝑖𝑥𝑗𝑥𝑘, 𝑥3𝑖

▶ If ⃗𝑥 ∈ ℝ𝑑, then 𝜙⃗( ⃗𝑥) ∈ ℝ1+3𝑑+(
𝑑
2)+(𝑑3).

▶ Example: if ⃗𝑥 ∈ ℝ50, then 𝜙⃗( ⃗𝑥) ∈ ℝ20,976!

▶ And so on...



Problem

▶ Mapping to very high dimensions is likely to
make the data linearly separable.

▶ But fitting a linear prediction rule in high
dimensions is costly.
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The Kernel Trick



Recap

▶ We can learn non-linear patterns by:

1. Defining a high-dimensional feature map,
𝜙⃗ ∶ ℝ𝑑 → ℝ𝑘

2. Mapping each training point to 𝑘-dimensional feature
space: ⃗𝑥(𝑖) ↦ 𝜙⃗( ⃗𝑥(𝑖))

3. Training a linear predictor in feature space.



Problem

▶ Learning in a very high-dimensional space can
be costly, or even infeasible.



The Trick

▶ We can train many linear predictors as if we have
mapped data to feature space, without actually
doing so.



Idea

▶ In many algorithms, when 𝜙⃗( ⃗𝑥) appears, it always
appears as part of a dot product:

𝜙⃗( ⃗𝑥) ⋅ 𝜙⃗( ⃗𝑥′)

▶ To compute, we could map and do dot product in
feature space.

▶ But this is costly!



Kernels

▶ But some 𝜙⃗ are special; for them, there is a
function 𝜅 satisfying:

𝜅( ⃗𝑥, ⃗𝑥′) = 𝜙⃗( ⃗𝑥) ⋅ 𝜙⃗( ⃗𝑥′)

▶ Crucially, computing 𝜅 does not require mapping
to feature space!

▶ 𝜅 is called a kernel function.



The Kernel Trick

▶ In many algorithms, when 𝜙⃗( ⃗𝑥) appears, it always
appears as part of a dot product of the form:

𝜙⃗( ⃗𝑥) ⋅ 𝜙⃗( ⃗𝑥′)

▶ By replacing all instances of 𝜙⃗( ⃗𝑥) ⋅ 𝜙⃗( ⃗𝑥′) with
𝜅( ⃗𝑥, ⃗𝑥′), we kernelize the algorithm; avoid
mapping to feature space.

▶ This is called the kernel trick.



Example: Polynomial Kernel

▶ Define the feature map:

𝜙⃗( ⃗𝑥) = (1, 𝑥21 , 𝑥22 , 𝑥23 , √2 𝑥1, √2 𝑥2, √2 𝑥3, √2 𝑥1𝑥2, √2 𝑥1𝑥3, √2 𝑥2𝑥3)𝑇

▶ 𝜅( ⃗𝑥, ⃗𝑥′) = (1 + ⃗𝑥 ⋅ ⃗𝑥′)2 is a kernel for this 𝜙⃗.
▶ That is, 𝜅( ⃗𝑥, ⃗𝑥′) = 𝜙⃗( ⃗𝑥) ⋅ 𝜙⃗( ⃗𝑥′)

▶ Called the polynomial kernel1

1In general, 𝜅( ⃗𝑥, ⃗𝑥′) = (1 + ⃗𝑥 ⋅ ⃗𝑥′)𝑘 is kernel for 𝑘-order monomial mappings



Kernelized Algorithms

▶ Only certain mappings have efficiently-computed
kernels.

▶ Only certain learning algorithms can be
kernelized.

▶ All of the linear algorithms we’ve learned can.
▶ Least squares, perceptron, SVMs, etc.



Kernel Ridge Regression

▶ Let’s kernelize ridge regression.

▶ First: verify that all instances of 𝜙⃗( ⃗𝑥) appear as
part of a dot product: 𝜙⃗( ⃗𝑥) ⋅ 𝜙⃗( ⃗𝑥′)



Kernel Ridge Regression
▶ Suppose 𝜙⃗( ⃗𝑥) is a feature map with kernel 𝑘.

▶ To train a ridge regressor in feature space, we’d
solve

argmin
𝑤⃗

1
𝑛

𝑛

∑
𝑖=1
(𝜙⃗( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)

2
+ 𝜆‖𝑤⃗‖2

▶ In matrix-vector form, where Φ is the design
matrix:

argmin
𝑤⃗

1
𝑛‖Φ𝑤⃗ − ⃗𝑦‖2 + 𝜆𝑤⃗𝑇𝑤⃗



Fact
▶ The solution 𝑤∗ is a linear combination of 𝜙⃗( ⃗𝑥(𝑖)):

𝑤⃗∗ =
𝑛

∑
𝑖=1
𝛼𝑖𝜙⃗( ⃗𝑥(𝑖))

▶ Why? The gradient of the regularized risk is:
2
𝑛

𝑛

∑
𝑖=1
(𝜙⃗( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖) 𝜙⃗( ⃗𝑥(𝑖)) + 2𝜆𝑤⃗

▶ Setting to zero, solving for 𝑤⃗ gives:

𝑤⃗∗ =
𝑛

∑
𝑖=1

(− 1𝑛𝜆𝜙⃗( ⃗𝑥
(𝑖)) ⋅ 𝑤⃗∗ − 𝑦𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝛼𝑖

𝜙⃗( ⃗𝑥(𝑖))



Fact

▶ The solution 𝑤∗ is a linear combination of 𝜙⃗( ⃗𝑥(𝑖)):

𝑤⃗∗ =
𝑛

∑
𝑖=1
𝛼𝑖𝜙⃗( ⃗𝑥(𝑖))

▶ In matrix-vector form, where 𝛼⃗ = (𝛼1, … , 𝛼𝑛)𝑇:

𝑤⃗∗ = Φ𝑇𝛼⃗



Dual Problem

▶ Using the fact that 𝑤⃗∗ = ∑𝑛𝑖=1 𝛼𝑖𝜙⃗( ⃗𝑥(𝑖)) = Φ𝑇𝛼⃗ for
some 𝛼⃗, the problem:

argmin
𝑤⃗

1
𝑛‖Φ𝑤⃗ − ⃗𝑦‖2 + 𝜆𝑤⃗𝑇𝑤⃗

is equivalent to the dual problem:

argmin
𝛼⃗

1
𝑛‖ΦΦ

𝑇𝛼⃗ − ⃗𝑦‖2 + 𝜆𝛼⃗𝑇ΦΦ𝑇𝛼⃗



Kernelizing

▶ Where does 𝜙⃗( ⃗𝑥) appear in this problem?

argmin
𝛼⃗

1
𝑛‖ΦΦ

𝑇𝛼⃗ − ⃗𝑦‖2 + 𝜆𝛼⃗𝑇ΦΦ𝑇𝛼⃗

▶ Inside Φ:

Φ = (

𝜙⃗( ⃗𝑥(1))
𝜙⃗( ⃗𝑥(2))

⋮
𝜙⃗( ⃗𝑥(𝑛))

)



Exercise

Argue that the (i, j) entry of ΦΦ𝑇 is equal to
𝜅( ⃗𝑥(𝑖), ⃗𝑥(𝑗)).

Φ = (

𝜙⃗( ⃗𝑥(1))
𝜙⃗( ⃗𝑥(2))

⋮
𝜙⃗( ⃗𝑥(𝑛))

)



Kernelizing

▶ The (𝑖, 𝑗) entry of ΦΦ𝑇 is 𝜙⃗( ⃗𝑥(𝑖)) ⋅ 𝜙⃗( ⃗𝑥(𝑗)) = 𝜅( ⃗𝑥(𝑖), ⃗𝑥(𝑗))

ΦΦ𝑇 = (

𝜅( ⃗𝑥(1), ⃗𝑥(1)) 𝜅( ⃗𝑥(1), ⃗𝑥(2)) ⋯ 𝜅( ⃗𝑥(1), ⃗𝑥(𝑛))
𝜅( ⃗𝑥(2), ⃗𝑥(1)) 𝜅( ⃗𝑥(2), ⃗𝑥(2)) ⋯ 𝜅( ⃗𝑥(2), ⃗𝑥(𝑛))

⋮ ⋮ ⋱ ⋮
𝜅( ⃗𝑥(𝑛), ⃗𝑥(1)) 𝜅( ⃗𝑥(𝑛), ⃗𝑥(2)) ⋯ 𝜅( ⃗𝑥(𝑛), ⃗𝑥(𝑛))

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐾

▶ 𝐾 is called the Kernel matrix (or Gram matrix).



Kernel Ridge Regression

▶ The dual problem becomes:

argmin
𝛼⃗

1
𝑛‖𝐾𝛼⃗ − ⃗𝑦‖2 + 𝜆𝛼⃗𝑇𝐾𝛼⃗

▶ Exact solution:

𝛼⃗∗ = (𝐾 + 𝑛𝜆𝐼)−1 ⃗𝑦

▶ This is kernel ridge regression.



Kernelization

▶ Observe: we train linear predictor in feature
space without actually mapping to feature space:

𝛼⃗∗ = (𝐾 + 𝑛𝜆𝐼)−1 ⃗𝑦



Making Predictions
▶ To predict on a new point ⃗𝑥, normally:
𝐻( ⃗𝑥) = 𝑤⃗∗ ⋅ 𝜙⃗( ⃗𝑥).

▶ How to do this without actually mapping?

▶ Recall: 𝑤∗ = ∑𝑛𝑖=1 𝛼∗𝑖 𝜙⃗( ⃗𝑥(𝑖))

▶ So:

𝐻( ⃗𝑥) =
𝑛

∑
𝑖=1
𝛼∗𝑖 𝜙⃗( ⃗𝑥(𝑖)) ⋅ 𝜙⃗( ⃗𝑥) =

𝑛

∑
𝑖=1
𝛼∗𝑖 𝜅( ⃗𝑥(𝑖), ⃗𝑥)



Making Predictions

▶ To make a prediction on a new point:

𝐻( ⃗𝑥) =
𝑛

∑
𝑖=1
𝛼∗𝑖 𝜅( ⃗𝑥(𝑖), ⃗𝑥)

▶ No need to map to feature space.

▶ Interpretation: A weighted sum of kernel
evaluations.



Procedure: Kernel Ridge Regression

1. Pick a kernel function, 𝜅.

2. Solve linear system: 𝛼⃗∗ = (𝐾 + 𝑛𝜆𝐼)−1 ⃗𝑦

3. To make new prediction, 𝐻( ⃗𝑥) = ∑𝑛𝑖=1 𝛼∗𝑖 𝜅( ⃗𝑥(𝑖), ⃗𝑥)



Kernel Soft-SVM

▶ Soft-SVM can also be kernelized.

1. Pick a kernel function, 𝜅.

2. Solve dual problem (e.g., with SGD):

argmin
𝛼⃗

(𝜆𝛼⃗𝑇𝐾𝛼⃗ + 1𝑛

𝑛

∑
𝑖=1
max{0, 1 − 𝑦𝑖(𝐾𝛼⃗)𝑖})

3. To make new prediction, 𝐻( ⃗𝑥) = ∑𝑖∈𝑆 𝛼∗𝑖 𝜅( ⃗𝑥(𝑖), ⃗𝑥)
▶ Where 𝑆 is the set of indices of support vectors.



Kernelization Downsides

▶ Often, training involves the 𝑛 × 𝑛 kernel matrix.
▶ Can be very large!

▶ There are ways to mitigate this:
▶ Small-batch stochastic gradient descent.
▶ Nyström method.
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Kernel Functions



Valid Kernels

▶ The first step in kernel learning is to pick a
kernel function, 𝜅.

▶ To be a valid kernel, must compute the dot
product w.r.t., some mapping, 𝜙⃗( ⃗𝑥).

▶ That is, it must be that

𝜅( ⃗𝑥, ⃗𝑥′) = 𝜙⃗( ⃗𝑥) ⋅ 𝜙⃗( ⃗𝑥′)

for some 𝜙⃗.



Constructing Kernels: Approach #1

▶ How do we come up with valid kernel functions?

▶ Approach #1:
1. Start by picking 𝜙⃗
2. Find a function 𝜅 that efficiently computes 𝜙⃗( ⃗𝑥) ⋅ 𝜙⃗( ⃗𝑥′),
if one exists.



Constructing Kernels: Approach #2
▶ New kernels can be constructed from other
kernels.

▶ Suppose 𝜅1, 𝜅2, 𝜅3 are kernels and 𝑓 is any
function. Then the below are kernels:

▶ 𝜅( ⃗𝑥, ⃗𝑥′) = 𝜅1( ⃗𝑥, ⃗𝑥′) + 𝜅2( ⃗𝑥, ⃗𝑥′)

▶ 𝜅( ⃗𝑥, ⃗𝑥′) = 𝜅1( ⃗𝑥, ⃗𝑥′) × 𝜅2( ⃗𝑥, ⃗𝑥′)

▶ 𝜅( ⃗𝑥, ⃗𝑥′) = 𝜅3(𝜙⃗( ⃗𝑥), 𝜙⃗( ⃗𝑥′))

▶ 𝜅( ⃗𝑥, ⃗𝑥′) = 𝑓( ⃗𝑥)𝜅1( ⃗𝑥, ⃗𝑥′)𝑓( ⃗𝑥′)



Verifying Kernels

Theorem

A symmetric function 𝜅 is a valid kernel if and only
if the kernel matrix, 𝐾, is positive semi-definite for
any choice of data, ⃗𝑥(1), … , ⃗𝑥(𝑛).



Radial Basis Function Kernel

▶ Often, though, we don’t design our own kernel.

▶ A very popular choice: the radial basis function
(RBF) kernel (or Gaussian kernel):

𝜅( ⃗𝑥, ⃗𝑥′) = 𝑒
−‖ ⃗𝑥− ⃗𝑥′‖2

2𝜎2 = 𝑒−𝛾‖ ⃗𝑥− ⃗𝑥′‖2 where 𝛾 = 1/(2𝜎2)



RBF Kernel Interpretation

𝜅( ⃗𝑥, ⃗𝑥′) = 𝑒
−‖ ⃗𝑥− ⃗𝑥′‖2

2𝜎2 = 𝑒−𝛾‖ ⃗𝑥− ⃗𝑥′‖2

▶ Interpretation: RBF kernel measures similarity of
⃗𝑥 and ⃗𝑥′
▶ Very similar: 𝜅( ⃗𝑥, ⃗𝑥′) ≈ 1.
▶ Very different: 𝜅( ⃗𝑥, ⃗𝑥′) ≈ 0.

▶ Parameter 𝜎 (or 𝛾) controls the scale
▶ The larger 𝜎 (smaller 𝛾), the wider the Guassian



RBF Kernel Interpretation

▶ Recall that in kernel ridge regression / SVM, the
prediction is:

𝐻( ⃗𝑥) =
𝑛

∑
𝑖=1
𝛼𝑖𝜅( ⃗𝑥(𝑖), ⃗𝑥)

▶ Observations:
▶ One parameter 𝛼𝑖 learned for each training point ⃗𝑥(𝑖)
▶ 𝜅( ⃗𝑥(𝑖), ⃗𝑥) will be ≈ 0 for any ⃗𝑥(𝑖) far from ⃗𝑥
▶ 𝐻( ⃗𝑥) is largely determined by the training points
closest to ⃗𝑥



RBF Kernel Interpretation
▶ RBF function placed at each training point.
▶ 𝐻( ⃗𝑥) is largely determined by training points closest to ⃗𝑥
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RBF Kernel Interpretation

▶ An RBF Kernel predictor can be seen as a
generalization of the 𝑘-nearest neighbor rule



RBF Kernel Map

▶ What 𝜙 is the RBF kernel a kernel for?

▶ The mapping 𝜙⃗( ⃗𝑥) with entries of the form:

𝑒−‖ ⃗𝑥‖2/2𝑥𝑖,
1
√2!

𝑒−‖ ⃗𝑥‖2/2𝑥𝑖𝑥𝑗,
1
√3!

𝑒−‖ ⃗𝑥‖2/2𝑥𝑖𝑥𝑗𝑥𝑘, …

▶ This is a mapping to an infinite dimensional
Hilbert space!



Other Kernels

▶ There are other interesting kernels useful for
specific domains.

▶ Example: string kernels for text classification.
▶ Dot product in space generated by all substrings.
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Demo: Kernel SVM



Demo
▶ Train an RBF kernel SVM on the data below.
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Aside: Hyperparameter Selection

▶ Two hyperparameters to specify:
▶ Slack: 𝐶
▶ Kernel width: 𝛾

▶ Choose with grid search cross-validation
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