

Lecture 8 | Part 1

Recap

We started with nearest neighbor rules.

- Capable of learning non-linear patterns.
- **Did not learn** feature importance.
- Computationally-expensive.
 - $\Theta(n)$ memory and prediction time.

- In response, we developed empirical risk minimization (ERM).
- Step 1: choose a **hypothesis class**
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)

For first hypothesis class, we chose linear models.

$$H(\vec{x}) = w_0 + w_1 x_1 + \dots + w_d x_d$$

Θ(d) memory and prediction time.

We saw different loss functions: square, absolute, perceptron, hinge

To train a linear model, pick loss L and minimize risk:

$$\arg\min_{\vec{w}} R(\vec{w}) = \arg\min_{\vec{w}} \frac{1}{n} \left[\sum_{i=1}^{n} L(\vec{x}^{(i)}, y_i, \vec{w}) \right]$$

We saw how to control the complexity of the learned model with regularization.

$$\arg\min_{\vec{w}} \tilde{R}(\vec{w}) = \arg\min_{\vec{w}} \frac{1}{n} \left[\sum_{i=1}^{n} L(\vec{x}^{(i)}, y_i, \vec{w}) \right] + \rho(\vec{w})$$

- Some ERM problems have direct solutions.
 Least squares, ridge regression.
- We saw most others do not, and must be solved iteratively with, e.g., (stochastic) (sub)gradient descent.

Linear Model Zoo

Name	Loss Function	Regularizer	Direct Solution
Least Squares	square	-	yes
Ridge Regression	square	∥ <i>ŵ</i> ∥²	yes
LASSO	square	∥ <i>ѿ</i> ҆∥ ₁	no
Perceptron	perceptron	-	no
Soft-SVM	hinge	∥ <i>ŵ</i> ∥²	no

Non-Linear Patterns

- We saw two ways of learning non-linear patterns with linear models:
- 1. Explicit mapping to feature space with **basis functions**.

• E.g., learn
$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + ... + w_k \phi_k(\vec{x})$$

- 2. Implicit mapping with kernel methods.
- Each has downsides.

Basis Functions

• Idea: choose a mapping $\vec{\phi}$ that transforms data; train linear model in feature space.

Downsides:

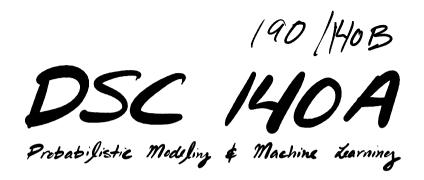
- Must choose a good mapping. How?
- Feature space is often very high-dimensional (costly).

Kernels

- Idea: implicitly map to high-dimensional space with kernel trick.
- Downsides:
 - Since prediction is sum over training points, Θ(n) in memory and time

Where are we now?

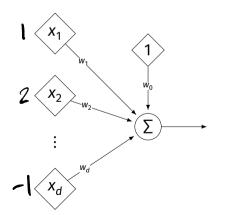
A new hypothesis class, beyond linear models.



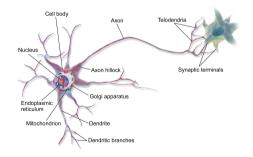
Lecture 8 | Part 2

Linear Models

$$H(\vec{x}) = w_0 + w_1 x_1 + \dots + w_d x_d$$



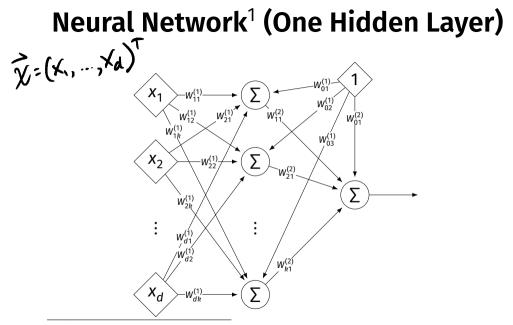
 $\vec{y} = (1, 2, -1)$



Generalizing Linear Models

► The brain is a **network** of neurons.

- The output of a neuron is used as an input to another.
- Idea: chain together multiple "neurons" into a neural network.



¹Specifically, a fully-connected, feed-forward neural network

Architecture

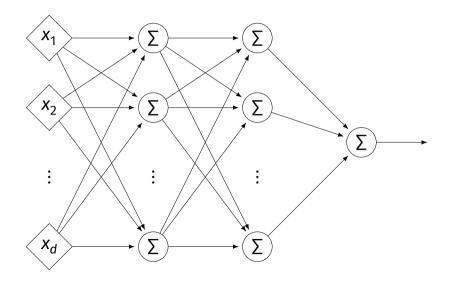
- Neurons are organized into layers.
 Input layer, output layer, and hidden layers.
- Number of cells in input layer determined by dimensionality of input feature vectors.
- Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

Can have more than one hidden layer.
 A network is "deep" if it has >1 hidden layer.

Hidden layers can have different number of neurons.

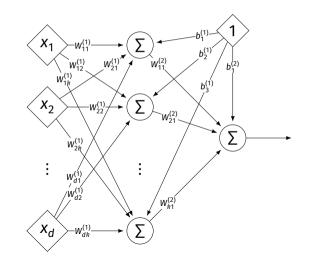
Neural Network (Two Hidden Layers)



- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

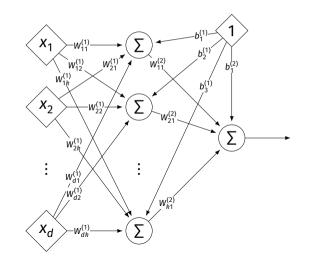
Notation

- Input is layer #0.
- W⁽ⁱ⁾_{jk} denotes weight of connection between neuron j in layer (i – 1) and neuron k in layer i
- Layer weights are 2-d arrays.



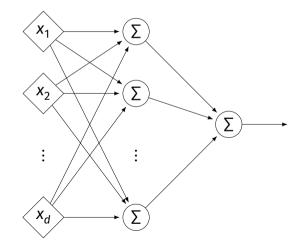
Notation

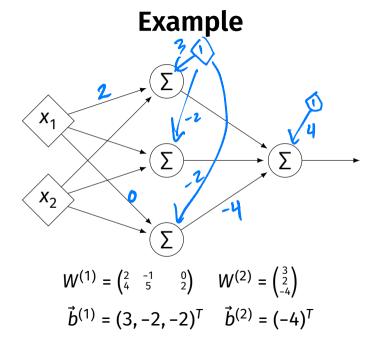
- Each hidden/output neuron gets a "dummy" input of 1.
- *j*th node in *i*th layer assigned a bias weight of b⁽ⁱ⁾_j
- Biases for layer are a vector: $\vec{b}^{(i)}$



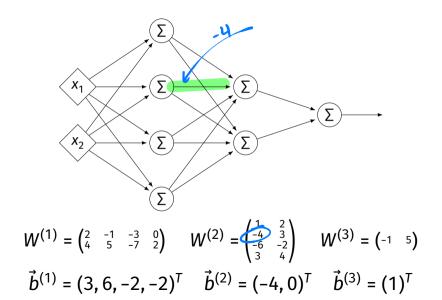
Notation

- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.



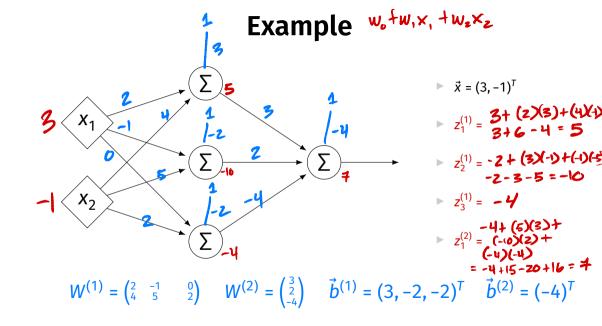


Example



Evaluation

- These are "fully-connected, feed-forward" networks with one output.
- ▶ They are functions $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^1$
- To evaluate $H(\vec{x})$, compute result of layer *i*, use as inputs for layer *i* + 1.

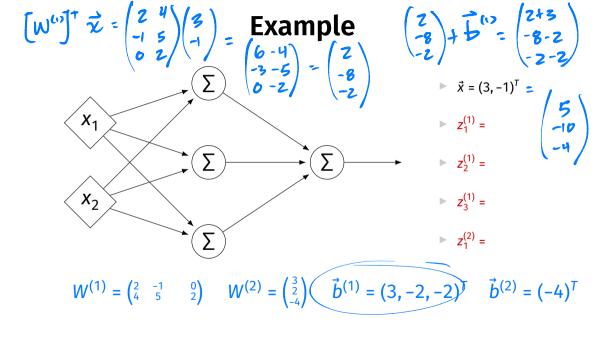


Evaluation as Matrix Multiplication

• Let $z_j^{(i)}$ be the output of node *j* in layer *i*.

• Make a vector of these outputs: $\vec{z}^{(i)} = (z_1^{(i)}, z_2^{(i)}, ...)^T$

• Observe that
$$\vec{z}^{(i)} = [W^{(i)}]^T \vec{z}^{(i-1)} + \vec{b}^{(i)}$$



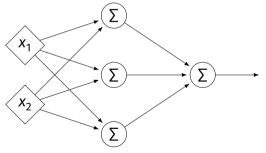
Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = \begin{bmatrix} W^{(1)} \end{bmatrix}^T \vec{z} + \vec{b}^{(1)}$$

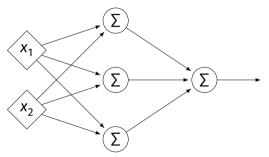
$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = \begin{bmatrix} W^{(2)} \end{bmatrix}^T \vec{z} + \vec{b}^{(2)}$$
$$H^{(2)} : \mathbb{R}^3 \to \mathbb{R}^1$$



NNs as Function Composition

The full NN is a composition of layer functions.



$$H(\vec{x}) = H^{(2)}(H^{(1)}(\vec{x})) = \left[W^{(2)}\right]^T \underbrace{\left(\left[W^{(1)}\right]^T \vec{x} + \vec{b}^{(1)}\right)}_{\vec{z}^{(1)}} + \vec{b}^{(2)}$$

NNs as Function Composition

▶ In general, if there *k* hidden layers:

$$H(\vec{x}) = H^{(k+1)} \left(\cdots H^{(3)} \left(H^{(2)} \left(H^{(1)}(\vec{x}) \right) \right) \cdots \right)$$

 $W^{(1)} = 2 \times 3 \qquad W^{(2)} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

Exercise

Show that:

$$H(\vec{x}) = \left[W^{(2)}\right]^{T} \left(\left[W^{(1)}\right]^{T} \vec{x} + \vec{b}^{(1)}\right) + \vec{b}^{(2)} = \vec{w} \cdot \text{Aug}(\vec{x})$$

for some appropriately-defined vector \vec{w} .

$$\begin{bmatrix} W^{(2)} \end{bmatrix}^{T} \begin{bmatrix} W^{(1)} \end{bmatrix}^{T} \stackrel{\sim}{\times} + \begin{bmatrix} W^{(2)} \end{bmatrix} \stackrel{\sim}{\mathbf{b}} \stackrel{(1)}{\mathbf{b}} \stackrel{(2)}{\mathbf{b}} \stackrel{($$

Result

- The composition of linear functions is again a linear function.
- The NNs we have seen so far are all equivalent to linear models!
- For NNs to be more useful, we will need to add non-linearity.

Activations

So far, the output of a neuron has been a linear function of its inputs:

$$\binom{w_0 + w_1 x_1 + w_2 x_2 + ...}{w_1 + w_2 + ...}$$

- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
 E.g., saturation.

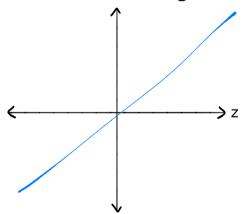
Idea

To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

Linear Activation

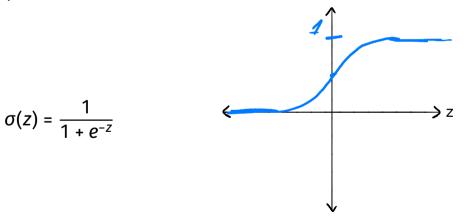
The linear activation is what we've been using.

$$\sigma(z) = z$$



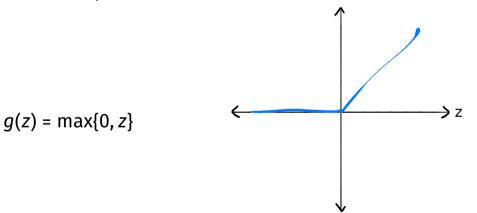
Sigmoid Activation

The sigmoid models saturation in many natural processes.

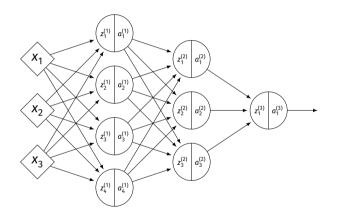


ReLU Activation

The Rectified Linear Unit (ReLU) tends to work better in practice.

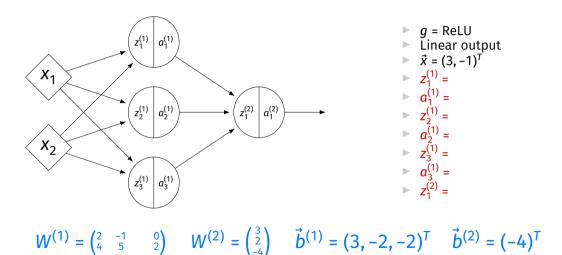


Notation



z_j⁽ⁱ⁾ is the linear activation before g is applied.
 a_j⁽ⁱ⁾ = g(z⁽ⁱ⁾) is the actual output of the neuron.

Example



Output Activations

- The activation of the output neuron(s) can be different than the activation of the hidden neurons.
- ► In classification, **sigmoid** activation makes sense.
- ► In regression, **linear** activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

Lecture 8 | Part 3

Training Neural Networks

Training Neural Networks

As with linear models, we can use ERM.

Step 1: choose a hypothesis class
 Choose a neural network architecture (depth / width), activation.

- Step 2: choose a **loss function**
- Step 3: minimize expected loss (empirical risk)

Parameter Vectors

- A neural network is totally determined by its parameters.
- ► We can package all of the parameter arrays $W^{(1)}, W^{(2)}, ...,$ as well as the biases $\vec{b}^{(1)}, \vec{b}^{(2)}, ...$ into a single **parameter vector** \vec{w} .

Square Loss for NNs

The square loss can be used to train a neural network.

$$L(\vec{x},y,\vec{w})=(H(\vec{x};\vec{w})-y)^2$$

Cross-Entropy Loss for NNs

- When using sigmoid output activation for classification, we often use the cross-entropy.
- Assume labels are 1 and 0. Then:

$$L(\vec{x}, y, \vec{w}) = -\begin{cases} \log H(\vec{x}; \vec{w}), & \text{if } y = 1\\ \log \left[1 - H(\vec{x}; \vec{w}) \right], & \text{if } y = 0 \end{cases}$$

Minimizing Risk

Having chosen a loss, we next minimize empirical risk:²

$$\underset{\vec{w}}{\operatorname{arg\,min}} R(\vec{w}) = \underset{\vec{w}}{\operatorname{arg\,min}} \frac{1}{n} \left[\sum_{i=1}^{n} L(\vec{x}^{(i)}, y_i, \vec{w}) \right]$$

- Except for special cases, there is no direct solution for the minimizer.
- Use iterative methods: e.g., SGD.

²Can also add a regularizer.

Gradient Descent for NNs

To perform SGD, we must compute ∇R .

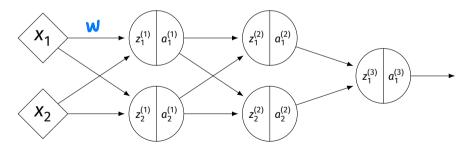
E.g., using square loss:

$$\nabla R = \frac{2}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}; \vec{w}) - y_i) \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

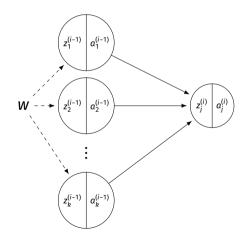
▶ We must compute $\nabla_{\vec{w}} H$; the gradient of the network with respect to the parameter vector, \vec{w} .

Gradient of a Network

The gradient of H w.r.t., parameter vector w can be computed using the chain rule.



Example



$$z_{j}^{(i)} = b_{j}^{(i)} + \sum_{\ell=1}^{k} W_{\ell j}^{(i)} a_{\ell}^{(i-1)}$$

$$\begin{aligned} \frac{\partial a_j^{(i)}}{\partial w} &= \frac{\partial a_j^{(i)}}{\partial z_j^{(i)}} \frac{\partial z_j^{(i)}}{\partial w} \\ &= \frac{\partial a_j^{(i)}}{\partial z_j^{(i)}} \left[\sum_{\ell=1}^k \frac{\partial z_j}{\partial a_\ell^{(i-1)}} \right] \\ &= \frac{\partial a_j^{(i)}}{\partial z_j^{(i)}} \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right] \end{aligned}$$

Gradient of a Network

► We found:

$$\frac{\partial a_j^{(i)}}{\partial w} = \frac{\partial a_j^{(i)}}{\partial z_j^{(i)}} \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right]$$

Recalling that $a_i^{(i)} = g(z_i^{(i)})$, we can simplify a little:

$$\frac{\partial a_j^{(i)}}{\partial w} = g'(z_j^{(i)}) \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right]$$

Gradient of a Network

$$\frac{\partial a_j^{(i)}}{\partial w} = g'(z_j^{(i)}) \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right]$$

- We can apply the above formula recursively to compute ∂H/∂w for any parameter w.
- Efficient algorithm: **backpropagation**.
- Outside of the scope of DSC 140A (take DSC 140B).

Implications

$$\frac{\partial a_j^{(i)}}{\partial w} = g'(z_j^{(i)}) \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right]$$

Vanishing gradients: the deeper the network, the "weaker" the gradients; harder to train.

Prefer activations with stronger gradients.
 ReLU > sigmoid

Convex Risk?

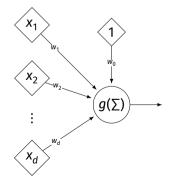
- When training linear models with convex losses, the risk was a convex function of w.
 - Because it is composed of convex functions.
- E.g., with the square loss:

$$\frac{1}{n}\sum_{i=1}^{n}\left(\vec{w}\cdot\vec{x}^{(i)}-y_{i}\right)^{2}$$

We like this because it was easy to optimize.

Convex Risk?

- What about with NNs? Is the risk still convex?
- Consider a very simple network with zero hidden layers, representing $H(\vec{x}; \vec{w}) = g(\vec{w} \cdot \text{Aug}(\vec{x}))$.



Convex Risk?

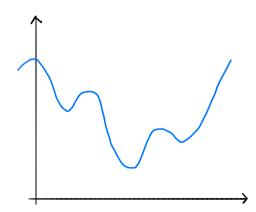
The risk w.r.t. the square loss is:

$$\frac{1}{n}\sum_{i=1}^{n}\left(g(\vec{w}\cdot \operatorname{Aug}(\vec{x}^{(i)}))-y_{i}\right)^{2}$$

If g is non-convex, the risk is in general no longer convex!

Non-Convexity

In general, NNs with non-linear activations have (highly) non-convex risk functions.



Training NNs

- SGD is still used to train neural networks, even though the risk is **non-convex**.
- May get stuck in local minima; depends heavily on starting position.

Downsides of NNs

- NNs tend to be harder to train than linear models.
- How do we choose the architecture?
- Engineering challenges with large networks.

Lecture 8 | Part 4

Demo

Feature Map

We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + \dots + w_k \phi_k(\vec{x})$$

- These basis functions are fixed **before** learning.
- **Downside:** we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

Interpretation: The hidden layers of a neural network learn a feature map.

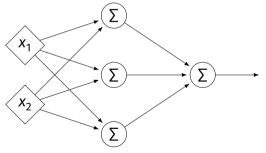
Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = \begin{bmatrix} W^{(1)} \end{bmatrix}^T \vec{z} + \vec{b}^{(1)}$$

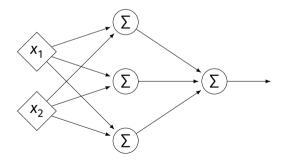
$$H^{(1)} : \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = \begin{bmatrix} W^{(2)} \end{bmatrix}^T \vec{z} + \vec{b}^{(2)}$$
$$H^{(2)} : \mathbb{R}^3 \to \mathbb{R}^1$$



Each Layer is a Function

- ▶ The hidden layer performs a feature map from \mathbb{R}^2 to \mathbb{R}^3 .
- The output layer makes a prediction in \mathbb{R}^3 .
- Intuition: The feature map is learned so as to make the output layer's job "easier".

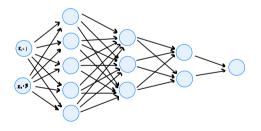


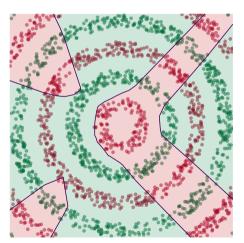
Demo

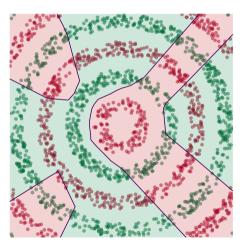
- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.

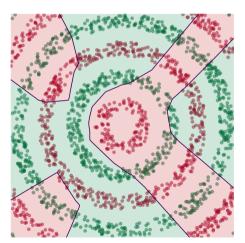
Demo

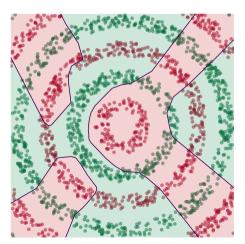
- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in x and see activations of last hidden layer.

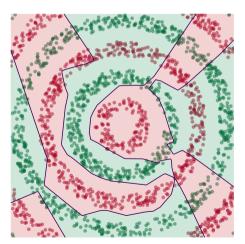


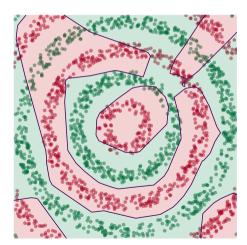


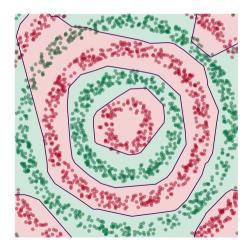


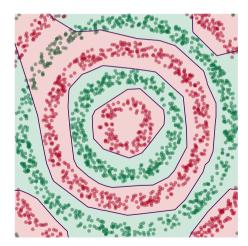


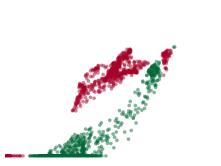


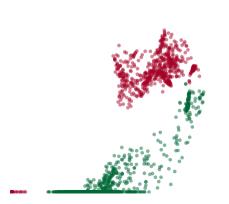


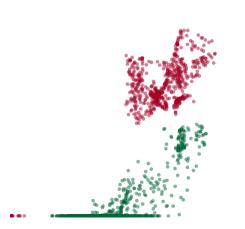


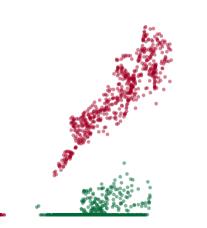












Deep Learning

- The NN has learned a new representation in which the data is easily classified.
- For more: DSC 140B Representation Learning.