
Lecture 8 | Part 1

Recap

Where have we been?▶ We started with nearest neighbor rules.▶ Capable of learning non-linear patterns.▶ Did not learn feature importance.▶ Computationally-expensive.▶ Θ(𝑛) memory and prediction time.

Where have we been?▶ In response, we developed empirical risk
minimization (ERM).▶ Step 1: choose a hypothesis class▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)

Where have we been?▶ For first hypothesis class, we chose linear
models. 𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑▶ Θ(𝑑) memory and prediction time.

Where have we been?▶ We saw different loss functions:▶ square, absolute, perceptron, hinge▶ To train a linear model, pick loss 𝐿 and minimize
risk:argmin�⃗� 𝑅(�⃗�) = argmin�⃗� 1𝑛 [𝑛∑𝑖=1 𝐿(⃗𝑥(𝑖), 𝑦𝑖, �⃗�)]

Where have we been?▶ We saw how to control the complexity of the
learned model with regularization.argmin�⃗� �̃�(�⃗�) = argmin�⃗� 1𝑛 [𝑛∑𝑖=1 𝐿(⃗𝑥(𝑖), 𝑦𝑖, �⃗�)] + 𝜌(�⃗�)

Where have we been?▶ Some ERM problems have direct solutions.▶ Least squares, ridge regression.▶ We saw most others do not, and must be solved
iteratively with, e.g., (stochastic) (sub)gradient
descent.

Linear Model Zoo

Name Loss Function Regularizer Direct Solution
Least Squares square - yes
Ridge Regression square ‖�⃗�‖2 yes
LASSO square ‖�⃗�‖1 no
Perceptron perceptron - no
Soft-SVM hinge ‖�⃗�‖2 no

Non-Linear Patterns▶ We saw two ways of learning non-linear patterns
with linear models:

1. Explicit mapping to feature space with basis
functions.▶ E.g., learn 𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜙1(⃗𝑥) + … + 𝑤𝑘𝜙𝑘(⃗𝑥)

2. Implicit mapping with kernel methods.▶ Each has downsides.

F.

Basis Functions▶ Idea: choose a mapping �⃗� that transforms data;
train linear model in feature space.▶ Downsides:▶ Must choose a good mapping. How?▶ Feature space is often very high-dimensional (costly).

Kernels▶ Idea: implicitly map to high-dimensional space
with kernel trick.▶ Downsides:▶ Since prediction is sum over training points, Θ(𝑛) in

memory and time

Where are we now?▶ A new hypothesis class, beyond linear models.

Lecture 8 | Part 2

Neural Networks

190 /0B

Linear Models

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑𝑥1
𝑥2
𝑥𝑑⋮

∑
1𝑤1

𝑤2
𝑤𝑑

𝑤0

y =(1,2, -1)

I

2

- I

Generalizing Linear Models▶ The brain is a network of neurons.▶ The output of a neuron is used as an input to
another.▶ Idea: chain together multiple “neurons” into a
neural network.

Neural Network1 (One Hidden Layer)

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑊(1)01𝑊(1)02𝑊(1)03 𝑊(2)01

1Specifically, a fully-connected, feed-forward neural network

x =(x,,...,Xa)+

Architecture▶ Neurons are organized into layers.▶ Input layer, output layer, and hidden layers.▶ Number of cells in input layer determined by
dimensionality of input feature vectors.▶ Number of cells in hidden layer(s) is determined
by you.▶ Output layer can have >1 neuron.

Architecture▶ Can have more than one hidden layer.▶ A network is “deep” if it has >1 hidden layer.▶ Hidden layers can have different number of
neurons.

Neural Network (Two Hidden Layers)𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮

∑
∑
∑
⋮ ∑

Network Weights▶ A neural network is a type of function.▶ Like a linear model, a NN is totally determined
by its weights.▶ But there are often many more weights to learn!

H(x) =w.Any(*)

Notation

▶ Input is layer #0.▶ 𝑊 (𝑖)𝑗𝑘 denotes weight
of connection
between neuron 𝑗 in
layer (𝑖 − 1) and
neuron 𝑘 in layer 𝑖▶ Layer weights are
2-d arrays.

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑏(1)1𝑏(1)2𝑏(1)3 𝑏(2)1

Notation

▶ Each hidden/output
neuron gets a
“dummy” input of 1.▶ 𝑗th node in 𝑖th layer
assigned a bias
weight of 𝑏(𝑖)𝑗▶ Biases for layer are
a vector: �⃗�(𝑖)

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

1𝑊(1)11𝑊(1)12𝑊(1)1𝑘 𝑊(1)21
𝑊(1)22

𝑊(1)2𝑘𝑊(1)𝑑1𝑊(1)𝑑2
𝑊(1)𝑑𝑘

𝑊(2)11
𝑊(2)21

𝑊(2)𝑘1

𝑏(1)1𝑏(1)2𝑏(1)3 𝑏(2)1

Notation

▶ Typically, we will not
draw the weights.▶ We will not draw the
dummy input, too,
but it is there.

𝑥1
𝑥2
𝑥𝑑
⋮

∑
∑
∑
⋮ ∑

Example

𝑥1
𝑥2

∑
∑
∑

∑
𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = (32−4)�⃗�(1) = (3, −2, −2)𝑇 �⃗�(2) = (−4)𝑇

2 Ify

Example

𝑥1
𝑥2

∑
∑
∑
∑

∑
∑ ∑

𝑊 (1) = (2 −1 −3 04 5 −7 2) 𝑊 (2) = (1 2−4 3−6 −23 4) 𝑊 (3) = (−1 5)�⃗�(1) = (3, 6, −2, −2)𝑇 �⃗�(2) = (−4, 0)𝑇 �⃗�(3) = (1)𝑇

Evaluation▶ These are “fully-connected, feed-forward”
networks with one output.▶ They are functions 𝐻(⃗𝑥) ∶ ℝ𝑑 → ℝ1▶ To evaluate 𝐻(⃗𝑥), compute result of layer 𝑖, use
as inputs for layer 𝑖 + 1.

Example

𝑥1
𝑥2

∑
∑
∑

∑
▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑧(1)2 =▶ 𝑧(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = (32−4) �⃗�(1) = (3, −2, −2)𝑇 �⃗�(2) = (−4)𝑇

I WofW,X, tWeX=

13
5

2 A

3 - 1
I I 3

I 3+(2)(3)+(4)()
1-2 -2 3+6 - 4 =5

o 2
- 2 +(3)(-1)+(-1)(5

5
-10 7 -2 - 3 - 5 =-10
1

- I I
-4 - 4

-2
2

- 4+(5)(3)7
2-10)(z) +

-2 (-4)(-4)
= -4 +15 -20 +16

=7

Evaluation as Matrix Multiplication▶ Let 𝑧(𝑖)𝑗 be the output of node 𝑗 in layer 𝑖.▶ Make a vector of these outputs: ⃗𝑧(𝑖) = (𝑧(𝑖)1 , 𝑧(𝑖)2 , …)𝑇▶ Observe that ⃗𝑧(𝑖) = [𝑊 (𝑖)]𝑇 ⃗𝑧(𝑖−1) + �⃗�(𝑖)

Example

𝑥1
𝑥2

∑
∑
∑

∑
▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑧(1)2 =▶ 𝑧(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = (32−4) �⃗�(1) = (3, −2, −2)𝑇 �⃗�(2) = (−4)𝑇

(way
+

1 =5i z")(3) =1) =()()+7
"
=E)

-(i)

①

Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+�⃗�(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+�⃗�(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑

NNs as Function Composition▶ The full NN is a composition of layer functions.

𝑥1
𝑥2

∑
∑
∑

∑
𝐻(⃗𝑥) = 𝐻(2)(𝐻(1)(⃗𝑥)) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + �⃗�(1))⏟⏟⏟⏟⏟⏟⏟⃗𝑧(1) +�⃗�(2)

NNs as Function Composition▶ In general, if there 𝑘 hidden layers:𝐻(⃗𝑥) = 𝐻(𝑘+1) (⋯𝐻(3) (𝐻(2) (𝐻(1)(⃗𝑥))) ⋯)

Exercise
Show that:𝐻(⃗𝑥) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + �⃗�(1)) + �⃗�(2) = �⃗� ⋅ Aug(⃗𝑥)
for some appropriately-defined vector �⃗�.

w(=2x3w(=(3)

(2)

[wa][wx]
+

x +w(]B" +5
1x33x2 (x3,3x1

d

⑭ 2x7
1

Result▶ The composition of linear functions is again a
linear function.▶ The NNs we have seen so far are all equivalent to
linear models!▶ For NNs to be more useful, we will need to add
non-linearity.

Activations▶ So far, the output of a neuron has been a linear
function of its inputs:𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …▶ Can be arbitrarily large or small.▶ But real neurons are activated non-linearly.▶ E.g., saturation.

g)

Idea▶ To add nonlinearity, we will apply a non-linear
activation function 𝑔 to the output of each
hidden neuron (and sometimes the output
neuron).

Linear Activation▶ The linear activation is what we’ve been using.

𝜎(𝑧) = 𝑧 zzimtex...

Sigmoid Activation▶ The sigmoid models saturation in many natural
processes.

𝜎(𝑧) = 11 + 𝑒−𝑧 z-

=

ReLU Activation▶ The Rectified Linear Unit (ReLU) tends to work
better in practice.

𝑔(𝑧) = max{0, 𝑧} z-
1

Notation

𝑥1
𝑥2
𝑥3

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3
𝑧(1)4 𝑎(1)4

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2
𝑧(2)3 𝑎(2)3

𝑧(3)1 𝑎(3)1

▶ 𝑧(𝑖)𝑗 is the linear activation before 𝑔 is applied.▶ 𝑎(𝑖)𝑗 = 𝑔(𝑧(𝑖)) is the actual output of the neuron.

Example

𝑥1
𝑥2

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2
𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1
▶ 𝑔 = ReLU▶ Linear output▶ ⃗𝑥 = (3, −1)𝑇▶ 𝑧(1)1 =▶ 𝑎(1)1 =▶ 𝑧(1)2 =▶ 𝑎(1)2 =▶ 𝑧(1)3 =▶ 𝑎(1)3 =▶ 𝑧(2)1 =𝑊 (1) = (2 −1 04 5 2) 𝑊 (2) = (32−4) �⃗�(1) = (3, −2, −2)𝑇 �⃗�(2) = (−4)𝑇

Output Activations▶ The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.▶ In classification, sigmoid activation makes sense.▶ In regression, linear activation makes sense.

Main Idea
A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.

Lecture 8 | Part 3

Training Neural Networks

Training Neural Networks▶ As with linear models, we can use ERM.▶ Step 1: choose a hypothesis class▶ Choose a neural network architecture (depth /
width), activation.▶ Step 2: choose a loss function▶ Step 3: minimize expected loss (empirical risk)

Parameter Vectors▶ A neural network is totally determined by its
parameters.▶ We can package all of the parameter arrays𝑊 (1), 𝑊 (2), …, as well as the biases �⃗�(1), �⃗�(2), … into
a single parameter vector �⃗�.

Square Loss for NNs▶ The square loss can be used to train a neural
network. 𝐿(⃗𝑥, 𝑦, �⃗�) = (𝐻(⃗𝑥; �⃗�) − 𝑦)2

Cross-Entropy Loss for NNs▶ When using sigmoid output activation for
classification, we often use the cross-entropy.▶ Assume labels are 1 and 0. Then:𝐿(⃗𝑥, 𝑦, �⃗�) = − {log𝐻(⃗𝑥; �⃗�), if 𝑦 = 1log [1 − 𝐻(⃗𝑥; �⃗�)] , if 𝑦 = 0

Minimizing Risk▶ Having chosen a loss, we next minimize
empirical risk:2argmin�⃗� 𝑅(�⃗�) = argmin�⃗� 1𝑛 [𝑛∑𝑖=1 𝐿(⃗𝑥(𝑖), 𝑦𝑖, �⃗�)]▶ Except for special cases, there is no direct
solution for the minimizer.▶ Use iterative methods: e.g., SGD.

2Can also add a regularizer.

Gradient Descent for NNs▶ To perform SGD, we must compute ∇𝑅.▶ E.g., using square loss:∇𝑅 = 2𝑛 𝑛∑𝑖=1 (𝐻(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)∇�⃗�𝐻(⃗𝑥(𝑖); �⃗�)▶ We must compute ∇�⃗�𝐻; the gradient of the
network with respect to the parameter vector, �⃗�.

i)

Gradient of a Network▶ The gradient of 𝐻 w.r.t., parameter vector �⃗� can
be computed using the chain rule.𝑥1
𝑥2

𝑧(1)1 𝑎(1)1
𝑧(1)2 𝑎(1)2

𝑧(2)1 𝑎(2)1
𝑧(2)2 𝑎(2)2

𝑧(3)1 𝑎(3)1
W

Example

𝑧(𝑖−1)1 𝑎(𝑖−1)1

𝑧(𝑖−1)2 𝑎(𝑖−1)2

𝑧(𝑖−1)𝑘 𝑎(𝑖−1)𝑘
⋮

𝑧(𝑖)𝑗 𝑎(𝑖)𝑗𝑤
𝑧(𝑖)𝑗 = 𝑏(𝑖)𝑗 + 𝑘∑ℓ=1 𝑊(𝑖)ℓ𝑗 𝑎(𝑖−1)ℓ

𝜕𝑎(𝑖)𝑗𝜕𝑤 = 𝜕𝑎(𝑖)𝑗𝜕𝑧(𝑖)𝑗 𝜕𝑧(𝑖)𝑗𝜕𝑤= 𝜕𝑎(𝑖)𝑗𝜕𝑧(𝑖)𝑗 [𝑘∑ℓ=1 𝜕𝑧𝑗𝜕𝑎(𝑖−1)ℓ]
= 𝜕𝑎(𝑖)𝑗𝜕𝑧(𝑖)𝑗 [𝑘∑ℓ=1 𝑊(𝑖)ℓ𝑗 𝜕𝑎(𝑖−1)ℓ𝜕𝑤]

Gradient of a Network▶ We found: 𝜕𝑎(𝑖)𝑗𝜕𝑤 = 𝜕𝑎(𝑖)𝑗𝜕𝑧(𝑖)𝑗 [𝑘∑ℓ=1 𝑊 (𝑖)ℓ𝑗 𝜕𝑎(𝑖−1)ℓ𝜕𝑤]
▶ Recalling that 𝑎(𝑖)𝑗 = 𝑔(𝑧(𝑖)𝑗), we can simplify a little:𝜕𝑎(𝑖)𝑗𝜕𝑤 = 𝑔′(𝑧(𝑖)𝑗) [𝑘∑ℓ=1 𝑊 (𝑖)ℓ𝑗 𝜕𝑎(𝑖−1)ℓ𝜕𝑤]

Gradient of a Network

𝜕𝑎(𝑖)𝑗𝜕𝑤 = 𝑔′(𝑧(𝑖)𝑗) [𝑘∑ℓ=1 𝑊 (𝑖)ℓ𝑗 𝜕𝑎(𝑖−1)ℓ𝜕𝑤]▶ We can apply the above formula recursively to
compute 𝜕𝐻/𝜕𝑤 for any parameter 𝑤.▶ Efficient algorithm: backpropagation.▶ Outside of the scope of DSC 140A (take DSC 140B).

Implications

𝜕𝑎(𝑖)𝑗𝜕𝑤 = 𝑔′(𝑧(𝑖)𝑗) [𝑘∑ℓ=1 𝑊 (𝑖)ℓ𝑗 𝜕𝑎(𝑖−1)ℓ𝜕𝑤]
▶ Vanishing gradients: the deeper the network, the
“weaker” the gradients; harder to train.▶ Prefer activations with stronger gradients.▶ ReLU > sigmoid

Convex Risk?▶ When training linear models with convex losses,
the risk was a convex function of �⃗�.▶ Because it is composed of convex functions.▶ E.g., with the square loss:1𝑛 𝑛∑𝑖=1 (�⃗� ⋅ ⃗𝑥(𝑖) − 𝑦𝑖)2▶ We like this because it was easy to optimize.

Convex Risk?▶ What about with NNs? Is the risk still convex?▶ Consider a very simple network with zero hidden
layers, representing 𝐻(⃗𝑥; �⃗�) = 𝑔(�⃗� ⋅ Aug(⃗𝑥)).𝑥1

𝑥2
𝑥𝑑⋮

𝑔(∑)
1𝑤1

𝑤2
𝑤𝑑

𝑤0

Convex Risk?▶ The risk w.r.t. the square loss is:1𝑛 𝑛∑𝑖=1 (𝑔(�⃗� ⋅ Aug(⃗𝑥(𝑖))) − 𝑦𝑖)2▶ If 𝑔 is non-convex, the risk is in general no longer
convex!

Non-Convexity▶ In general, NNs with non-linear activations have
(highly) non-convex risk functions.

Training NNs▶ SGD is still used to train neural networks, even
though the risk is non-convex.▶ May get stuck in local minima; depends heavily
on starting position.

Downsides of NNs▶ NNs tend to be harder to train than linear
models.▶ How do we choose the architecture?▶ Engineering challenges with large networks.

Lecture 8 | Part 4

Demo

Feature Map▶ We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map). 𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜙1(⃗𝑥) + … + 𝑤𝑘𝜙𝑘(⃗𝑥)▶ These basis functions are fixed before learning.▶ Downside: we have to choose �⃗� somehow.

Learning a Feature Map▶ Interpretation: The hidden layers of a neural
network learn a feature map.

Each Layer is a Function▶ We can think of each layer as a function mapping
a vector to a vector.▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+�⃗�(1)▶ 𝐻(1) ∶ ℝ2 → ℝ3▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+�⃗�(2)▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1
𝑥2

∑
∑
∑

∑

Each Layer is a Function▶ The hidden layer performs a feature map from ℝ2 to ℝ3.▶ The output layer makes a prediction in ℝ3.▶ Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

𝑥1
𝑥2

∑
∑
∑

∑

Demo▶ Train a deep network to classify the data below.▶ Hidden layers will learn a new feature map that
makes the data linearly separable.

Demo▶ We’ll use three hidden
layers, with last having
two neurons.▶ We can see this new
representation!▶ Plug in ⃗𝑥 and see
activations of last hidden
layer.

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Deep Learning▶ The NN has learned a new representation in
which the data is easily classified.▶ For more: DSC 140B - Representation Learning.

