
Lecture 8 | Part 1

Recap

Where have we been?

▶ We started with nearest neighbor rules.
▶ Capable of learning non-linear patterns.
▶ Did not learn feature importance.
▶ Computationally-expensive.

▶ Θ(𝑛) memory and prediction time.

Where have we been?

▶ In response, we developed empirical risk
minimization (ERM).

▶ Step 1: choose a hypothesis class

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

Where have we been?

▶ For first hypothesis class, we chose linear
models.

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑

▶ Θ(𝑑) memory and prediction time.

Where have we been?

▶ We saw different loss functions:
▶ square, absolute, perceptron, hinge

▶ To train a linear model, pick loss 𝐿 and minimize
risk:

argmin
𝑤⃗

𝑅(𝑤⃗) = argmin
𝑤⃗

1
𝑛 [

𝑛

∑
𝑖=1
𝐿(⃗𝑥(𝑖), 𝑦𝑖, 𝑤⃗)]

Where have we been?

▶ We saw how to control the complexity of the
learned model with regularization.

argmin
𝑤⃗

𝑅̃(𝑤⃗) = argmin
𝑤⃗

1
𝑛 [

𝑛

∑
𝑖=1
𝐿(⃗𝑥(𝑖), 𝑦𝑖, 𝑤⃗)] + 𝜌(𝑤⃗)

Where have we been?

▶ Some ERM problems have direct solutions.
▶ Least squares, ridge regression.

▶ We saw most others do not, and must be solved
iteratively with, e.g., (stochastic) (sub)gradient
descent.

Linear Model Zoo

Name Loss Function Regularizer Direct Solution

Least Squares square - yes
Ridge Regression square ‖𝑤⃗‖2 yes
LASSO square ‖𝑤⃗‖1 no
Perceptron perceptron - no
Soft-SVM hinge ‖𝑤⃗‖2 no

Non-Linear Patterns

▶ We saw two ways of learning non-linear patterns
with linear models:

1. Explicit mapping to feature space with basis
functions.
▶ E.g., learn 𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜙1(⃗𝑥) + … + 𝑤𝑘𝜙𝑘(⃗𝑥)

2. Implicit mapping with kernel methods.

▶ Each has downsides.

Basis Functions

▶ Idea: choose a mapping 𝜙⃗ that transforms data;
train linear model in feature space.

▶ Downsides:
▶ Must choose a good mapping. How?
▶ Feature space is often very high-dimensional (costly).

Kernels

▶ Idea: implicitly map to high-dimensional space
with kernel trick.

▶ Downsides:
▶ Since prediction is sum over training points, Θ(𝑛) in
memory and time

Where are we now?

▶ A new hypothesis class, beyond linear models.

Lecture 8 | Part 2

Neural Networks

Linear Models

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑑𝑥𝑑

𝑥1

𝑥2

𝑥𝑑

⋮
∑

1
𝑤1

𝑤2

𝑤𝑑

𝑤0

Generalizing Linear Models

▶ The brain is a network of neurons.

▶ The output of a neuron is used as an input to
another.

▶ Idea: chain together multiple “neurons” into a
neural network.

Neural Network1 (One Hidden Layer)

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

1
𝑊 (1)
11

𝑊 (1)
12

𝑊 (1)
1𝑘

𝑊 (1)
21

𝑊 (1)
22

𝑊 (1)
2𝑘

𝑊 (1)
𝑑1

𝑊 (1)
𝑑2

𝑊 (1)
𝑑𝑘

𝑊 (2)
11

𝑊 (2)
21

𝑊 (2)
𝑘1

𝑊 (1)
01

𝑊 (1)
02

𝑊 (1)
03

𝑊 (2)
01

1Specifically, a fully-connected, feed-forward neural network

Architecture

▶ Neurons are organized into layers.
▶ Input layer, output layer, and hidden layers.

▶ Number of cells in input layer determined by
dimensionality of input feature vectors.

▶ Number of cells in hidden layer(s) is determined
by you.

▶ Output layer can have >1 neuron.

Architecture

▶ Can have more than one hidden layer.
▶ A network is “deep” if it has >1 hidden layer.

▶ Hidden layers can have different number of
neurons.

Neural Network (Two Hidden Layers)

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

∑

∑

⋮

∑

Network Weights

▶ A neural network is a type of function.

▶ Like a linear model, a NN is totally determined
by its weights.

▶ But there are often many more weights to learn!

Notation

▶ Input is layer #0.

▶ 𝑊 (𝑖)
𝑗𝑘 denotes weight

of connection
between neuron 𝑗 in
layer (𝑖 − 1) and
neuron 𝑘 in layer 𝑖

▶ Layer weights are
2-d arrays.

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

1
𝑊 (1)
11

𝑊 (1)
12

𝑊 (1)
1𝑘

𝑊 (1)
21

𝑊 (1)
22

𝑊 (1)
2𝑘

𝑊 (1)
𝑑1

𝑊 (1)
𝑑2

𝑊 (1)
𝑑𝑘

𝑊 (2)
11

𝑊 (2)
21

𝑊 (2)
𝑘1

𝑏(1)1

𝑏(1)2

𝑏(1)3

𝑏(2)1

Notation

▶ Each hidden/output
neuron gets a
“dummy” input of 1.

▶ 𝑗th node in 𝑖th layer
assigned a bias
weight of 𝑏(𝑖)𝑗

▶ Biases for layer are
a vector: 𝑏⃗(𝑖)

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

1
𝑊 (1)
11

𝑊 (1)
12

𝑊 (1)
1𝑘

𝑊 (1)
21

𝑊 (1)
22

𝑊 (1)
2𝑘

𝑊 (1)
𝑑1

𝑊 (1)
𝑑2

𝑊 (1)
𝑑𝑘

𝑊 (2)
11

𝑊 (2)
21

𝑊 (2)
𝑘1

𝑏(1)1

𝑏(1)2

𝑏(1)3

𝑏(2)1

Notation

▶ Typically, we will not
draw the weights.

▶ We will not draw the
dummy input, too,
but it is there.

𝑥1

𝑥2

𝑥𝑑

⋮

∑

∑

∑

⋮

∑

Example

𝑥1

𝑥2

∑

∑

∑

∑

𝑊 (1) = (2 −1 0
4 5 2) 𝑊 (2) = (

3
2
−4
)

𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇

Example

𝑥1

𝑥2

∑

∑

∑

∑

∑

∑

∑

𝑊 (1) = (2 −1 −3 0
4 5 −7 2) 𝑊 (2) = (

1 2
−4 3
−6 −2
3 4

) 𝑊 (3) = (−1 5)

𝑏⃗(1) = (3, 6, −2, −2)𝑇 𝑏⃗(2) = (−4, 0)𝑇 𝑏⃗(3) = (1)𝑇

Evaluation

▶ These are “fully-connected, feed-forward”
networks with one output.

▶ They are functions 𝐻(⃗𝑥) ∶ ℝ𝑑 → ℝ1

▶ To evaluate 𝐻(⃗𝑥), compute result of layer 𝑖, use
as inputs for layer 𝑖 + 1.

Example

𝑥1

𝑥2

∑

∑

∑

∑

▶ ⃗𝑥 = (3, −1)𝑇

▶ 𝑧(1)1 =

▶ 𝑧(1)2 =

▶ 𝑧(1)3 =

▶ 𝑧(2)1 =

𝑊 (1) = (2 −1 0
4 5 2) 𝑊 (2) = (

3
2
−4
) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇

Evaluation as Matrix Multiplication

▶ Let 𝑧(𝑖)𝑗 be the output of node 𝑗 in layer 𝑖.

▶ Make a vector of these outputs: ⃗𝑧(𝑖) = (𝑧(𝑖)1 , 𝑧
(𝑖)
2 , …)𝑇

▶ Observe that ⃗𝑧(𝑖) = [𝑊 (𝑖)]𝑇 ⃗𝑧(𝑖−1) + 𝑏⃗(𝑖)

Example

𝑥1

𝑥2

∑

∑

∑

∑

▶ ⃗𝑥 = (3, −1)𝑇

▶ 𝑧(1)1 =

▶ 𝑧(1)2 =

▶ 𝑧(1)3 =

▶ 𝑧(2)1 =

𝑊 (1) = (2 −1 0
4 5 2) 𝑊 (2) = (

3
2
−4
) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇

Each Layer is a Function

▶ We can think of each layer as a function mapping
a vector to a vector.

▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)

▶ 𝐻(1) ∶ ℝ2 → ℝ3

▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)

▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1

𝑥2

∑

∑

∑

∑

NNs as Function Composition
▶ The full NN is a composition of layer functions.

𝑥1

𝑥2

∑

∑

∑

∑

𝐻(⃗𝑥) = 𝐻(2)(𝐻(1)(⃗𝑥)) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1))⏟⏟⏟⏟⏟⏟⏟
⃗𝑧(1)

+𝑏⃗(2)

NNs as Function Composition

▶ In general, if there 𝑘 hidden layers:

𝐻(⃗𝑥) = 𝐻(𝑘+1) (⋯𝐻(3) (𝐻(2) (𝐻(1)(⃗𝑥))) ⋯)

Exercise

Show that:

𝐻(⃗𝑥) = [𝑊 (2)]𝑇 ([𝑊 (1)]𝑇 ⃗𝑥 + 𝑏⃗(1)) + 𝑏⃗(2) = 𝑤⃗ ⋅ Aug(⃗𝑥)

for some appropriately-defined vector 𝑤⃗.

Result

▶ The composition of linear functions is again a
linear function.

▶ The NNs we have seen so far are all equivalent to
linear models!

▶ For NNs to be more useful, we will need to add
non-linearity.

Activations

▶ So far, the output of a neuron has been a linear
function of its inputs:

𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + …

▶ Can be arbitrarily large or small.

▶ But real neurons are activated non-linearly.
▶ E.g., saturation.

Idea

▶ To add nonlinearity, we will apply a non-linear
activation function 𝑔 to the output of each
hidden neuron (and sometimes the output
neuron).

Linear Activation

▶ The linear activation is what we’ve been using.

𝜎(𝑧) = 𝑧 z

Sigmoid Activation

▶ The sigmoid models saturation in many natural
processes.

𝜎(𝑧) = 1
1 + 𝑒−𝑧

z

ReLU Activation

▶ The Rectified Linear Unit (ReLU) tends to work
better in practice.

𝑔(𝑧) = max{0, 𝑧} z

Notation

𝑥1

𝑥2

𝑥3

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(1)4 𝑎(1)4

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(2)3 𝑎(2)3

𝑧(3)1 𝑎(3)1

▶ 𝑧(𝑖)𝑗 is the linear activation before 𝑔 is applied.
▶ 𝑎(𝑖)𝑗 = 𝑔(𝑧(𝑖)) is the actual output of the neuron.

Example

𝑥1

𝑥2

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(1)3 𝑎(1)3

𝑧(2)1 𝑎(2)1

▶ 𝑔 = ReLU
▶ Linear output
▶ ⃗𝑥 = (3, −1)𝑇
▶ 𝑧(1)1 =
▶ 𝑎(1)1 =
▶ 𝑧(1)2 =
▶ 𝑎(1)2 =
▶ 𝑧(1)3 =
▶ 𝑎(1)3 =
▶ 𝑧(2)1 =

𝑊 (1) = (2 −1 0
4 5 2) 𝑊 (2) = (

3
2
−4
) 𝑏⃗(1) = (3, −2, −2)𝑇 𝑏⃗(2) = (−4)𝑇

Output Activations

▶ The activation of the output neuron(s) can be
different than the activation of the hidden
neurons.

▶ In classification, sigmoid activation makes sense.

▶ In regression, linear activation makes sense.

Main Idea

A neural network with linear activations is a lin-
ear model. If non-linear activations are used, the
model is made non-linear.

Lecture 8 | Part 3

Training Neural Networks

Training Neural Networks

▶ As with linear models, we can use ERM.

▶ Step 1: choose a hypothesis class
▶ Choose a neural network architecture (depth /
width), activation.

▶ Step 2: choose a loss function

▶ Step 3: minimize expected loss (empirical risk)

Parameter Vectors

▶ A neural network is totally determined by its
parameters.

▶ We can package all of the parameter arrays
𝑊 (1), 𝑊 (2), …, as well as the biases 𝑏⃗(1), 𝑏⃗(2), … into
a single parameter vector 𝑤⃗.

Square Loss for NNs

▶ The square loss can be used to train a neural
network.

𝐿(⃗𝑥, 𝑦, 𝑤⃗) = (𝐻(⃗𝑥; 𝑤⃗) − 𝑦)2

Cross-Entropy Loss for NNs

▶ When using sigmoid output activation for
classification, we often use the cross-entropy.

▶ Assume labels are 1 and 0. Then:

𝐿(⃗𝑥, 𝑦, 𝑤⃗) = − {
log𝐻(⃗𝑥; 𝑤⃗), if 𝑦 = 1
log [1 − 𝐻(⃗𝑥; 𝑤⃗)] , if 𝑦 = 0

Minimizing Risk

▶ Having chosen a loss, we next minimize
empirical risk:2

argmin
𝑤⃗

𝑅(𝑤⃗) = argmin
𝑤⃗

1
𝑛 [

𝑛

∑
𝑖=1
𝐿(⃗𝑥(𝑖), 𝑦𝑖, 𝑤⃗)]

▶ Except for special cases, there is no direct
solution for the minimizer.

▶ Use iterative methods: e.g., SGD.
2Can also add a regularizer.

Gradient Descent for NNs

▶ To perform SGD, we must compute ∇𝑅.

▶ E.g., using square loss:

∇𝑅 = 2𝑛

𝑛

∑
𝑖=1
(𝐻(⃗𝑥(𝑖); 𝑤⃗) − 𝑦𝑖)∇𝑤⃗𝐻(⃗𝑥(𝑖); 𝑤⃗)

▶ We must compute ∇𝑤⃗𝐻; the gradient of the
network with respect to the parameter vector, 𝑤⃗.

Gradient of a Network

▶ The gradient of 𝐻 w.r.t., parameter vector 𝑤⃗ can
be computed using the chain rule.

𝑥1

𝑥2

𝑧(1)1 𝑎(1)1

𝑧(1)2 𝑎(1)2

𝑧(2)1 𝑎(2)1

𝑧(2)2 𝑎(2)2

𝑧(3)1 𝑎(3)1

Example

𝑧(𝑖−1)1 𝑎(𝑖−1)1

𝑧(𝑖−1)2 𝑎(𝑖−1)2

𝑧(𝑖−1)𝑘 𝑎(𝑖−1)𝑘

⋮

𝑧(𝑖)𝑗 𝑎(𝑖)𝑗𝑤

𝑧(𝑖)𝑗 = 𝑏(𝑖)𝑗 +
𝑘

∑
ℓ=1
𝑊 (𝑖)
ℓ𝑗 𝑎

(𝑖−1)
ℓ

𝜕𝑎(𝑖)𝑗
𝜕𝑤 =

𝜕𝑎(𝑖)𝑗
𝜕𝑧(𝑖)𝑗

𝜕𝑧(𝑖)𝑗
𝜕𝑤

=
𝜕𝑎(𝑖)𝑗
𝜕𝑧(𝑖)𝑗

[
𝑘

∑
ℓ=1

𝜕𝑧𝑗
𝜕𝑎(𝑖−1)ℓ

]

=
𝜕𝑎(𝑖)𝑗
𝜕𝑧(𝑖)𝑗

[
𝑘

∑
ℓ=1
𝑊 (𝑖)
ℓ𝑗
𝜕𝑎(𝑖−1)ℓ
𝜕𝑤]

Gradient of a Network

▶ We found:

𝜕𝑎(𝑖)𝑗
𝜕𝑤 =

𝜕𝑎(𝑖)𝑗
𝜕𝑧(𝑖)𝑗

[
𝑘

∑
ℓ=1
𝑊 (𝑖)
ℓ𝑗
𝜕𝑎(𝑖−1)ℓ
𝜕𝑤]

▶ Recalling that 𝑎(𝑖)𝑗 = 𝑔(𝑧(𝑖)𝑗), we can simplify a little:

𝜕𝑎(𝑖)𝑗
𝜕𝑤 = 𝑔′(𝑧(𝑖)𝑗) [

𝑘

∑
ℓ=1
𝑊 (𝑖)
ℓ𝑗
𝜕𝑎(𝑖−1)ℓ
𝜕𝑤]

Gradient of a Network

𝜕𝑎(𝑖)𝑗
𝜕𝑤 = 𝑔′(𝑧(𝑖)𝑗) [

𝑘

∑
ℓ=1
𝑊 (𝑖)
ℓ𝑗
𝜕𝑎(𝑖−1)ℓ
𝜕𝑤]

▶ We can apply the above formula recursively to
compute 𝜕𝐻/𝜕𝑤 for any parameter 𝑤.

▶ Efficient algorithm: backpropagation.

▶ Outside of the scope of DSC 140A (take DSC 140B).

Implications

𝜕𝑎(𝑖)𝑗
𝜕𝑤 = 𝑔′(𝑧(𝑖)𝑗) [

𝑘

∑
ℓ=1
𝑊 (𝑖)
ℓ𝑗
𝜕𝑎(𝑖−1)ℓ
𝜕𝑤]

▶ Vanishing gradients: the deeper the network, the
“weaker” the gradients; harder to train.

▶ Prefer activations with stronger gradients.
▶ ReLU > sigmoid

Convex Risk?

▶ When training linear models with convex losses,
the risk was a convex function of 𝑤⃗.
▶ Because it is composed of convex functions.

▶ E.g., with the square loss:

1
𝑛

𝑛

∑
𝑖=1
(𝑤⃗ ⋅ ⃗𝑥(𝑖) − 𝑦𝑖)

2

▶ We like this because it was easy to optimize.

Convex Risk?
▶ What about with NNs? Is the risk still convex?

▶ Consider a very simple network with zero hidden
layers, representing 𝐻(⃗𝑥; 𝑤⃗) = 𝑔(𝑤⃗ ⋅ Aug(⃗𝑥)).

𝑥1

𝑥2

𝑥𝑑

⋮
𝑔(∑)

1
𝑤1

𝑤2

𝑤𝑑

𝑤0

Convex Risk?

▶ The risk w.r.t. the square loss is:

1
𝑛

𝑛

∑
𝑖=1
(𝑔(𝑤⃗ ⋅ Aug(⃗𝑥(𝑖))) − 𝑦𝑖)

2

▶ If 𝑔 is non-convex, the risk is in general no longer
convex!

Non-Convexity

▶ In general, NNs with non-linear activations have
(highly) non-convex risk functions.

Training NNs

▶ SGD is still used to train neural networks, even
though the risk is non-convex.

▶ May get stuck in local minima; depends heavily
on starting position.

Downsides of NNs

▶ NNs tend to be harder to train than linear
models.

▶ How do we choose the architecture?

▶ Engineering challenges with large networks.

Lecture 8 | Part 4

Demo

Feature Map

▶ We have seen how to fit non-linear patterns with
linear models via basis functions (i.e., a feature
map).

𝐻(⃗𝑥) = 𝑤0 + 𝑤1𝜙1(⃗𝑥) + … + 𝑤𝑘𝜙𝑘(⃗𝑥)

▶ These basis functions are fixed before learning.

▶ Downside: we have to choose 𝜙⃗ somehow.

Learning a Feature Map

▶ Interpretation: The hidden layers of a neural
network learn a feature map.

Each Layer is a Function

▶ We can think of each layer as a function mapping
a vector to a vector.

▶ 𝐻(1)(⃗𝑧) = [𝑊 (1)]𝑇 ⃗𝑧+𝑏⃗(1)

▶ 𝐻(1) ∶ ℝ2 → ℝ3

▶ 𝐻(2)(⃗𝑧) = [𝑊 (2)]𝑇 ⃗𝑧+𝑏⃗(2)

▶ 𝐻(2) ∶ ℝ3 → ℝ1

𝑥1

𝑥2

∑

∑

∑

∑

Each Layer is a Function
▶ The hidden layer performs a feature map from ℝ2 to ℝ3.
▶ The output layer makes a prediction in ℝ3.
▶ Intuition: The feature map is learned so as to make the
output layer’s job “easier”.

𝑥1

𝑥2

∑

∑

∑

∑

Demo
▶ Train a deep network to classify the data below.

▶ Hidden layers will learn a new feature map that
makes the data linearly separable.

Demo
▶ We’ll use three hidden
layers, with last having
two neurons.

▶ We can see this new
representation!

▶ Plug in ⃗𝑥 and see
activations of last hidden
layer.

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Deep Learning

▶ The NN has learned a new representation in
which the data is easily classified.

▶ For more: DSC 140B - Representation Learning.

