$$
D S C 140 A
$$

Where have we been?

- We started with nearest neighbor rules.
- Capable of learning non-linear patterns.
- Did not learn feature importance.
- Computationally-expensive.
$\Theta(n)$ memory and prediction time.

Where have we been?

- In response, we developed empirical risk minimization (ERM).
- Step 1: choose a hypothesis class
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)

Where have we been?

- For first hypothesis class, we chose linear models.

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
$$

$\Theta(d)$ memory and prediction time.

Where have we been?

- We saw different loss functions:
- square, absolute, perceptron, hinge
- To train a linear model, pick loss L and minimize risk:

$$
\underset{\vec{w}}{\arg \min } R(\vec{w})=\underset{\vec{w}}{\arg \min } \frac{1}{n}\left[\sum_{i=1}^{n} L\left(\vec{x}^{(i)}, y_{i}, \vec{w}\right)\right]
$$

Where have we been?

- We saw how to control the complexity of the learned model with regularization.

$$
\underset{\vec{w}}{\arg \min } \tilde{R}(\vec{w})=\underset{\vec{w}}{\arg \min } \frac{1}{n}\left[\sum_{i=1}^{n} L\left(\vec{x}^{(i)}, y_{i}, \vec{w}\right)\right]+\rho(\vec{w})
$$

Where have we been?

- Some ERM problems have direct solutions.
- Least squares, ridge regression.
- We saw most others do not, and must be solved iteratively with, e.g., (stochastic) (sub)gradient descent.

Linear Model Zoo

Name	Loss Function	Regularizer	Direct Solution		
Least Squares	square	-	yes		
Ridge Regression	square	$\\|\vec{W}\\|^{2}$	yes		
LASSO	square	$\\|\vec{W}\\|_{1}$	no		
Perceptron	perceptron	-	no		
Soft-SVM	hinge	$\\|\vec{w}\\|^{2}$	no		

Non-Linear Patterns

- We saw two ways of learning non-linear patterns with linear models:

1. Explicit mapping to feature space with basis functions.

- E.g., learn $H(\vec{x})=w_{0}+w_{1} \phi_{1}(\vec{x})+\ldots+w_{k} \phi_{k}(\vec{x})$

2. Implicit mapping with kernel methods.

- Each has downsides.

Basis Functions

- Idea: choose a mapping $\vec{\phi}$ that transforms data; train linear model in feature space.
- Downsides:
- Must choose a good mapping. How?
- Feature space is often very high-dimensional (costly).

Kernels

- Idea: implicitly map to high-dimensional space with kernel trick.
- Downsides:
- Since prediction is sum over training points, $\Theta(n)$ in memory and time

Where are we now?

- A new hypothesis class, beyond linear models.

$$
\text { DSC, } 140 A
$$

Linear Models

$$
H(\vec{x})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
$$

Generalizing Linear Models

- The brain is a network of neurons.
- The output of a neuron is used as an input to another.
- Idea: chain together multiple "neurons" into a neural network.

Neural Network ${ }^{1}$ (One Hidden Layer)

${ }^{1}$ Specifically, a fully-connected, feed-forward neural network

Architecture

- Neurons are organized into layers.
- Input layer, output layer, and hidden layers.
\Rightarrow Number of cells in input layer determined by dimensionality of input feature vectors.
> Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

- Can have more than one hidden layer.
- A network is "deep" if it has >1 hidden layer.
- Hidden layers can have different number of neurons.

Neural Network (Two Hidden Layers)

Network Weights

- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

Notation

- Input is layer \#0.
- $W_{j k}^{(i)}$ denotes weight of connection between neuron j in layer ($i-1$) and neuron k in layer i
- Layer weights are 2-d arrays.

Notation

- Each hidden/output neuron gets a "dummy" input of 1.
- j th node in ith layer assigned a bias weight of $b_{j}^{(i)}$
- Biases for layer are a vector: $\vec{b}^{(i)}$

Notation

- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.

Example

Example

Evaluation

- These are "fully-connected, feed-forward" networks with one output.
- They are functions $H(\vec{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$
- To evaluate $H(\vec{x})$, compute result of layer i, use as inputs for layer $i+1$.

Example

Evaluation as Matrix Multiplication

Let $z_{j}^{(i)}$ be the output of node j in layer i.

- Make a vector of these outputs: $z^{(i)}=\left(z_{1}^{(i)}, z_{2}^{(i)}, \ldots\right)^{\top}$
\Rightarrow Observe that $\vec{z}^{(i)}=\left[W^{(i)}\right]^{\top} \vec{z}^{(i-1)}+\vec{b}^{(i)}$

Example

Each Layer is a Function

- We can think of each layer as a function mapping a vector to a vector.

$$
\begin{gathered}
\Rightarrow H^{(1)}(\vec{z})=\left[W^{(1)}\right]^{\top} \vec{z}+\vec{b}^{(1)} \\
>H^{(1)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
>H^{(2)}(\vec{z})=\left[W^{(2)}\right]^{T} \vec{z}+\vec{b}^{(2)} \\
>H^{(2)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}
\end{gathered}
$$

NNs as Function Composition

- The full NN is a composition of layer functions.

$$
H(\vec{x})=H^{(2)}\left(H^{(1)}(\vec{x})\right)=\left[W^{(2)}\right]^{\top} \underbrace{\left(\left[W^{(1)}\right]^{\top} \vec{x}+\vec{b}^{(1)}\right.}_{z^{(1)}})+\vec{b}^{(2)}
$$

NNs as Function Composition

- In general, if there k hidden layers:

$$
H(\vec{x})=H^{(k+1)}\left(\cdots H^{(3)}\left(H^{(2)}\left(H^{(1)}(\vec{x})\right)\right) \cdots\right)
$$

Exercise

Show that:

$$
H(\vec{x})=\left[W^{(2)}\right]^{\top}\left(\left[W^{(1)}\right]^{\top} \vec{x}+\vec{b}^{(1)}\right)+\vec{b}^{(2)}=\vec{w} \cdot \operatorname{Aug}(\vec{x})
$$

for some appropriately-defined vector \vec{w}.

Result

- The composition of linear functions is again a linear function.
- The NNs we have seen so far are all equivalent to linear models!
- For NNs to be more useful, we will need to add non-linearity.

Activations

- So far, the output of a neuron has been a linear function of its inputs:

$$
w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots
$$

- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
- E.g., saturation.

Idea

- To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

Linear Activation

The linear activation is what we've been using.

$$
\sigma(z)=z
$$

Sigmoid Activation

- The sigmoid models saturation in many natural processes.

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

ReLU Activation

- The Rectified Linear Unit (ReLU) tends to work better in practice.

$$
g(z)=\max \{0, z\}
$$

Notation

$>z_{j}^{(i)}$ is the linear activation before g is applied.
$a_{j}^{(i)}=g\left(z^{(i)}\right)$ is the actual output of the neuron.

Example

$\Rightarrow g=$ ReLU

- Linear output
- $\vec{x}=(3,-1)^{\top}$
- $z_{1}^{(1)}=$
- $a_{1}^{(1)}=$
- $z_{2}^{(1)}=$
- $a_{2}^{(1)}=$
- $z_{3}^{(1)}=$
- $a_{3}^{(1)}=$
- $z_{1}^{(2)}=$

$$
W^{(1)}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
4 & 5 & 2
\end{array}\right) \quad W^{(2)}=\left(\begin{array}{c}
3 \\
2 \\
-4
\end{array}\right) \quad \vec{b}^{(1)}=(3,-2,-2)^{T} \quad \vec{b}^{(2)}=(-4)^{T}
$$

Output Activations

- The activation of the output neuron(s) can be different than the activation of the hidden neurons.
- In classification, sigmoid activation makes sense.
- In regression, linear activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

$$
\text { DSC } 140 \mathrm{~A}
$$

Training Neural Networks

- As with linear models, we can use ERM.
- Step 1: choose a hypothesis class
- Choose a neural network architecture (depth / width), activation.
- Step 2: choose a loss function
- Step 3: minimize expected loss (empirical risk)

Parameter Vectors

- A neural network is totally determined by its parameters.
- We can package all of the parameter arrays $W^{(1)}, W^{(2)}, \ldots$, as well as the biases $\vec{b}^{(1)}, \vec{b}^{(2)}, \ldots$ into a single parameter vector \vec{w}.

Square Loss for NNs

- The square loss can be used to train a neural network.

$$
L(\vec{x}, y, \vec{w})=(H(\vec{x} ; \vec{w})-y)^{2}
$$

Cross-Entropy Loss for NNs

- When using sigmoid output activation for classification, we often use the cross-entropy.
- Assume labels are 1 and 0 . Then:

$$
L(\vec{x}, y, \vec{w})=- \begin{cases}\log H(\vec{x} ; \vec{w}), & \text { if } y=1 \\ \log [1-H(\vec{x} ; \vec{w})], & \text { if } y=0\end{cases}
$$

Minimizing Risk

- Having chosen a loss, we next minimize empirical risk: ${ }^{2}$

$$
\underset{\vec{w}}{\arg \min } R(\vec{w})=\underset{\vec{w}}{\arg \min } \frac{1}{n}\left[\sum_{i=1}^{n} L\left(\vec{x}^{(i)}, y_{i}, \vec{w}\right)\right]
$$

- Except for special cases, there is no direct solution for the minimizer.
> Use iterative methods: e.g., SGD.

${ }^{2}$ Can also add a regularizer.

Gradient Descent for NNs

- To perform SGD, we must compute ∇R.
- E.g., using square loss:

$$
\nabla R=\frac{2}{n} \sum_{i=1}^{n}\left(H\left(\vec{x}^{(i)} ; \vec{w}\right)-y_{i}\right) \nabla_{\vec{w}} H\left(\vec{x}^{(i)} ; \vec{w}\right)
$$

- We must compute $\nabla_{\vec{w}} H$; the gradient of the network with respect to the parameter vector, \vec{w}.

Gradient of a Network

- The gradient of H w.r.t., parameter vector \vec{w} can be computed using the chain rule.

Example

$$
z_{j}^{(i)}=b_{j}^{(i)}+\sum_{\ell=1}^{k} W_{\ell j}^{(i)} a_{\ell}^{(i-1)}
$$

$$
\begin{aligned}
\frac{\partial a_{j}^{(i)}}{\partial w} & =\frac{\partial a_{j}^{(i)}}{\partial z_{j}^{(i)}} \frac{\partial z_{j}^{(i)}}{\partial w} \\
& =\frac{\partial a_{j}^{(i)}}{\partial z_{j}^{(i)}}\left[\sum_{\ell=1}^{k} \frac{\partial z_{j}}{\partial a_{\ell}^{(i-1)}}\right] \\
& =\frac{\partial a_{j}^{(i)}}{\partial z_{j}^{(i)}}\left[\sum_{\ell=1}^{k} W_{\ell j}^{(i)} \frac{\partial a_{\ell}^{(i-1)}}{\partial w}\right]
\end{aligned}
$$

Gradient of a Network

- We found:

$$
\frac{\partial a_{j}^{(i)}}{\partial w}=\frac{\partial a_{j}^{(i)}}{\partial z_{j}^{(i)}}\left[\sum_{\ell=1}^{k} W_{\ell j}^{(i)} \frac{\partial a_{\ell}^{(i-1)}}{\partial w}\right]
$$

Recalling that $a_{j}^{(i)}=g\left(z_{j}^{(i)}\right)$, we can simplify a little:

$$
\frac{\partial a_{j}^{(i)}}{\partial w}=g^{\prime}\left(z_{j}^{(i)}\right)\left[\sum_{\ell=1}^{k} W_{\ell j}^{(i)} \frac{\partial a_{\ell}^{(i-1)}}{\partial w}\right]
$$

Gradient of a Network

$$
\frac{\partial a_{j}^{(i)}}{\partial w}=g^{\prime}\left(z_{j}^{(i)}\right)\left[\sum_{\ell=1}^{k} w_{l j}^{(i)} \frac{\partial a_{l}^{(i-1)}}{\partial w}\right]
$$

- We can apply the above formula recursively to compute $\partial H / \partial w$ for any parameter w.
- Efficient algorithm: backpropagation.
- Outside of the scope of DSC 140A (take DSC 140B).

Implications

$$
\frac{\partial a_{j}^{(i)}}{\partial w}=g^{\prime}\left(z_{j}^{(i)}\right)\left[\sum_{\ell=1}^{k} w_{l j}^{(i)} \frac{\partial a_{l}^{(i-1)}}{\partial w}\right]
$$

- Vanishing gradients: the deeper the network, the "weaker" the gradients; harder to train.
- Prefer activations with stronger gradients.
- ReLU > sigmoid

Convex Risk?

- When training linear models with convex losses, the risk was a convex function of \vec{w}.
- Because it is composed of convex functions.
- E.g., with the square loss:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \vec{x}^{(i)}-y_{i}\right)^{2}
$$

- We like this because it was easy to optimize.

Convex Risk?

- What about with NNs? Is the risk still convex?
- Consider a very simple network with zero hidden layers, representing $H(\vec{x} ; \vec{w})=g(\vec{w} \cdot \operatorname{Aug}(\vec{x}))$.

Convex Risk?

- The risk w.r.t. the square loss is:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(g\left(\vec{w} \cdot \operatorname{Aug}\left(\vec{x}^{(i)}\right)\right)-y_{i}\right)^{2}
$$

- If g is non-convex, the risk is in general no longer convex!

Non-Convexity

- In general, NNs with non-linear activations have (highly) non-convex risk functions.

Training NNs

- SGD is still used to train neural networks, even though the risk is non-convex.
- May get stuck in local minima; depends heavily on starting position.

Downsides of NNs

- NNs tend to be harder to train than linear models.
- How do we choose the architecture?
- Engineering challenges with large networks.

$$
D S C 140 A
$$

Feature Map

- We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$
H(\vec{x})=w_{0}+w_{1} \phi_{1}(\vec{x})+\ldots+w_{k} \phi_{k}(\vec{x})
$$

- These basis functions are fixed before learning.
- Downside: we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

- Interpretation: The hidden layers of a neural network learn a feature map.

Each Layer is a Function

- We can think of each layer as a function mapping a vector to a vector.

$$
\begin{gathered}
\Rightarrow H^{(1)}(\vec{z})=\left[W^{(1)}\right]^{\top} \vec{z}+\vec{b}^{(1)} \\
>H^{(1)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
>H^{(2)}(\vec{z})=\left[W^{(2)}\right]^{T} \vec{z}+\vec{b}^{(2)} \\
>H^{(2)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}
\end{gathered}
$$

Each Layer is a Function

- The hidden layer performs a feature map from \mathbb{R}^{2} to \mathbb{R}^{3}.
- The output layer makes a prediction in \mathbb{R}^{3}.
- Intuition: The feature map is learned so as to make the output layer's job "easier".

Demo

- Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.

Demo

- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in \vec{x} and see
 activations of last hidden layer.

Learning a New Representation

Deep Learning

- The NN has learned a new representation in which the data is easily classified.
- For more: DSC 140B - Representation Learning.

