DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 1

Recap

- We started with nearest neighbor rules.
 - Capable of learning non-linear patterns.
 - Did not learn feature importance.
 - Computationally-expensive.
 - \triangleright $\Theta(n)$ memory and prediction time.

- In response, we developed **empirical risk minimization** (ERM).
- Step 1: choose a hypothesis class
- Step 2: choose a loss function
- ► Step 3: minimize expected loss (empirical risk)

For first hypothesis class, we chose **linear** models.

$$H(\vec{x}) = W_0 + W_1 X_1 + ... + W_d X_d$$

 \triangleright $\Theta(d)$ memory and prediction time.

- ► We saw different loss functions:
 - square, absolute, perceptron, hinge
- To train a linear model, pick loss L and minimize risk:

$$\arg\min_{\vec{w}} R(\vec{w}) = \arg\min_{\vec{w}} \frac{1}{n} \left[\sum_{i=1}^{n} L(\vec{x}^{(i)}, y_i, \vec{w}) \right]$$

We saw how to control the complexity of the learned model with regularization.

$$\arg\min_{\vec{w}} \tilde{R}(\vec{w}) = \arg\min_{\vec{w}} \frac{1}{n} \left[\sum_{i=1}^{n} L(\vec{x}^{(i)}, y_i, \vec{w}) \right] + \rho(\vec{w})$$

- Some ERM problems have direct solutions.
 - Least squares, ridge regression.
- We saw most others do not, and must be solved iteratively with, e.g., (stochastic) (sub)gradient descent.

Linear Model Zoo

Name	Loss Function	Regularizer	Direct Solution
Least Squares	square	-	yes
Ridge Regression	square	$\ \vec{w}\ ^2$	yes
LASSO	square	∥ ਔ ∥ ₁	no
Perceptron	perceptron	-	no
Soft-SVM	hinge	$\ \vec{w}\ ^2$	no

Non-Linear Patterns

- We saw two ways of learning non-linear patterns with linear models:
- 1. Explicit mapping to feature space with **basis functions**.
 - E.g., learn $H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + ... + w_k \phi_k(\vec{x})$
- 2. Implicit mapping with kernel methods.
- Each has downsides.

Basis Functions

- ▶ **Idea:** choose a mapping $\vec{\phi}$ that transforms data; train linear model in feature space.
- Downsides:
 - Must choose a good mapping. How?
 - Feature space is often very high-dimensional (costly).

Kernels

► **Idea:** implicitly map to high-dimensional space with **kernel trick**.

Downsides:

Since prediction is sum over training points, $\Theta(n)$ in memory and time

Where are we now?

A new hypothesis class, beyond linear models.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 2

Neural Networks

Linear Models

$$H(\vec{x}) = w_0 + w_1 x_1 + ... + w_d x_d$$

Generalizing Linear Models

- The brain is a **network** of neurons.
- The output of a neuron is used as an input to another.

Idea: chain together multiple "neurons" into a neural network.

Neural Network¹ (One Hidden Layer)

¹Specifically, a fully-connected, feed-forward neural network

Architecture

- Neurons are organized into layers.
 - Input layer, output layer, and hidden layers.
- Number of cells in input layer determined by dimensionality of input feature vectors.
- Number of cells in hidden layer(s) is determined by you.
- Output layer can have >1 neuron.

Architecture

- Can have more than one hidden layer.
 - A network is "deep" if it has >1 hidden layer.
- Hidden layers can have different number of neurons.

Neural Network (Two Hidden Layers)

Network Weights

- A neural network is a type of function.
- Like a linear model, a NN is totally determined by its weights.
- But there are often many more weights to learn!

Notation

- Input is layer #0.
- W⁽ⁱ⁾_{jk} denotes weight of connection between neuron j in layer (i − 1) and neuron k in layer i
- Layer weights are 2-d arrays.

Notation

- Each hidden/output neuron gets a "dummy" input of 1.
- jth node in ith layer assigned a bias weight of b_i⁽ⁱ⁾
- Biases for layer are a vector: $\vec{b}^{(i)}$

Notation

- Typically, we will not draw the weights.
- We will not draw the dummy input, too, but it is there.

Example

$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix} \qquad W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$$

$$\vec{b}^{(1)} = (3, -2, -2)^{T} \qquad \vec{b}^{(2)} = (-4)^{T}$$

Example

$$W^{(1)} = \begin{pmatrix} 2 & -1 & -3 & 0 \\ 4 & 5 & -7 & 2 \end{pmatrix} W^{(2)} = \begin{pmatrix} 1 & 2 \\ -4 & 3 \\ -6 & -2 \\ 3 & 4 \end{pmatrix} W^{(3)} = \begin{pmatrix} -1 & 5 \end{pmatrix}$$

$$\vec{b}^{(1)} = (3, 6, -2, -2)^T \vec{b}^{(2)} = (-4, 0)^T \vec{b}^{(3)} = (1)^T$$

Evaluation

- These are "fully-connected, feed-forward" networks with one output.
- ► They are functions $H(\vec{x}) : \mathbb{R}^d \to \mathbb{R}^1$
- To evaluate $H(\vec{x})$, compute result of layer i, use as inputs for layer i + 1.

Example

$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$ $\vec{b}^{(1)} = (3, -2, -2)^T$ $\vec{b}^{(2)} = (-4)^T$

Evaluation as Matrix Multiplication

- Let $z_i^{(i)}$ be the output of node j in layer i.
- Make a vector of these outputs: $\vec{z}^{(i)} = (z_1^{(i)}, z_2^{(i)}, ...)^T$
- Observe that $\vec{z}^{(i)} = [W^{(i)}]^T \vec{z}^{(i-1)} + \vec{b}^{(i)}$

Example

$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$ $\vec{b}^{(1)} = (3, -2, -2)^T$ $\vec{b}^{(2)} = (-4)^T$

Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = [W^{(1)}]^T \vec{z} + \vec{b}^{(1)}$$

$$\vdash H^{(1)}: \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

$$\vdash H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$$

NNs as Function Composition

► The full NN is a composition of layer functions.

$$H(\vec{x}) = H^{(2)}(H^{(1)}(\vec{x})) = \left[W^{(2)}\right]^T \underbrace{\left(\left[W^{(1)}\right]^T \vec{x} + \vec{b}^{(1)}\right)}_{\neq (1)} + \vec{b}^{(2)}$$

NNs as Function Composition

▶ In general, if there k hidden layers:

$$H(\vec{x}) = H^{(k+1)} \left(\cdots H^{(3)} \left(H^{(2)} \left(H^{(1)} (\vec{x}) \right) \right) \cdots \right)$$

Exercise

Show that:

$$H(\vec{x}) = [W^{(2)}]^T ([W^{(1)}]^T \vec{x} + \vec{b}^{(1)}) + \vec{b}^{(2)} = \vec{w} \cdot \text{Aug}(\vec{x})$$

 $H(\vec{x}) = [W^{(2)}]^T ([W^{(1)}]^T \vec{x} + \vec{b}^{(1)}) + \vec{b}^{(2)} = \vec{w} \cdot \text{Aug}(\vec{x})$

for some appropriately-defined vector \vec{w} .

Result

► The composition of linear functions is again a linear function.

The NNs we have seen so far are all equivalent to linear models!

For NNs to be more useful, we will need to add non-linearity.

Activations

So far, the output of a neuron has been a linear function of its inputs:

$$W_0 + W_1 X_1 + W_2 X_2 + \dots$$

- Can be arbitrarily large or small.
- But real neurons are activated non-linearly.
 - E.g., saturation.

Idea

► To add nonlinearity, we will apply a non-linear activation function g to the output of each hidden neuron (and sometimes the output neuron).

Linear Activation

► The linear activation is what we've been using.

Sigmoid Activation

The sigmoid models saturation in many natural processes.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

ReLU Activation

► The Rectified Linear Unit (ReLU) tends to work better in practice.

Notation

- $ightharpoonup z_i^{(i)}$ is the linear activation before g is applied.
- $a_i^{(i)} = g(z^{(i)})$ is the actual output of the neuron.

Example

$$W^{(1)} = \begin{pmatrix} 2 & -1 & 0 \\ 4 & 5 & 2 \end{pmatrix}$$
 $W^{(2)} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$ $\vec{b}^{(1)} = (3, -2, -2)^T$ $\vec{b}^{(2)} = (-4)^T$

Output Activations

The activation of the output neuron(s) can be different than the activation of the hidden neurons.

- In classification, **sigmoid** activation makes sense.
- In regression, **linear** activation makes sense.

Main Idea

A neural network with linear activations is a linear model. If non-linear activations are used, the model is made non-linear.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 3

Training Neural Networks

Training Neural Networks

- As with linear models, we can use ERM.
- Step 1: choose a hypothesis class
 - Choose a neural network architecture (depth / width), activation.
- Step 2: choose a loss function
- ► Step 3: minimize expected loss (empirical risk)

Parameter Vectors

A neural network is totally determined by its parameters.

We can package all of the parameter arrays $W^{(1)}$, $W^{(2)}$, ..., as well as the biases $\vec{b}^{(1)}$, $\vec{b}^{(2)}$, ... into a single **parameter vector** \vec{w} .

Square Loss for NNs

The square loss can be used to train a neural network.

$$L(\vec{x}, y, \vec{w}) = (H(\vec{x}; \vec{w}) - y)^2$$

Cross-Entropy Loss for NNs

When using sigmoid output activation for classification, we often use the cross-entropy.

Assume labels are 1 and 0. Then:

$$L(\vec{x}, y, \vec{w}) = -\begin{cases} \log H(\vec{x}; \vec{w}), & \text{if } y = 1 \\ \log [1 - H(\vec{x}; \vec{w})], & \text{if } y = 0 \end{cases}$$

Minimizing Risk

► Having chosen a loss, we next minimize empirical risk:²

$$\arg\min_{\vec{w}} R(\vec{w}) = \arg\min_{\vec{w}} \frac{1}{n} \left[\sum_{i=1}^{n} L(\vec{x}^{(i)}, y_i, \vec{w}) \right]$$

Except for special cases, there is no direct solution for the minimizer.

▶ Use iterative methods: e.g., SGD.

²Can also add a regularizer.

Gradient Descent for NNs

- ▶ To perform SGD, we must compute ∇R .
- E.g., using square loss:

$$\nabla R = \frac{2}{n} \sum_{i=1}^{n} (H(\vec{x}^{(i)}; \vec{w}) - y_i) \nabla_{\vec{w}} H(\vec{x}^{(i)}; \vec{w})$$

We must compute $\nabla_{\vec{w}}H$; the gradient of the network with respect to the parameter vector, \vec{w} .

Gradient of a Network

The gradient of H w.r.t., parameter vector \vec{w} can be computed using the chain rule.

Example

$$z_j^{(i)} = b_j^{(i)} + \sum_{\ell=1}^k W_{\ell j}^{(i)} \alpha_\ell^{(i-1)}$$

$$\begin{aligned} \frac{\partial a_j^{(i)}}{\partial w} &= \frac{\partial a_j^{(i)}}{\partial z_j^{(i)}} \frac{\partial z_j^{(i)}}{\partial w} \\ &= \frac{\partial a_j^{(i)}}{\partial z_j^{(i)}} \left[\sum_{\ell=1}^k \frac{\partial z_j}{\partial a_\ell^{(i-1)}} \right] \\ &= \frac{\partial a_j^{(i)}}{\partial z_j^{(i)}} \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right] \end{aligned}$$

Gradient of a Network

▶ We found:

$$\frac{\partial a_j^{(i)}}{\partial w} = \frac{\partial a_j^{(i)}}{\partial z_i^{(i)}} \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right]$$

Recalling that $a_i^{(i)} = g(z_i^{(i)})$, we can simplify a little:

$$\frac{\partial a_j^{(i)}}{\partial w} = g'(z_j^{(i)}) \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right]$$

Gradient of a Network

$$\frac{\partial a_j^{(i)}}{\partial w} = g'(z_j^{(i)}) \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right]$$

- We can apply the above formula recursively to compute $\partial H/\partial w$ for any parameter w.
- Efficient algorithm: backpropagation.
- Outside of the scope of DSC 140A (take DSC 140B).

Implications

$$\frac{\partial a_j^{(i)}}{\partial w} = g'(z_j^{(i)}) \left[\sum_{\ell=1}^k W_{\ell j}^{(i)} \frac{\partial a_\ell^{(i-1)}}{\partial w} \right]$$

- ► **Vanishing gradients**: the deeper the network, the "weaker" the gradients; harder to train.
- Prefer activations with stronger gradients.
 - ► ReLU > sigmoid

Convex Risk?

- When training linear models with convex losses, the risk was a convex function of \vec{w} .
 - Because it is composed of convex functions.
- E.g., with the square loss:

$$\frac{1}{n}\sum_{i=1}^{n}\left(\vec{w}\cdot\vec{x}^{(i)}-y_{i}\right)^{2}$$

We like this because it was easy to optimize.

Convex Risk?

- ▶ What about with NNs? Is the risk still convex?
- Consider a very simple network with zero hidden layers, representing $H(\vec{x}; \vec{w}) = g(\vec{w} \cdot \text{Aug}(\vec{x}))$.

Convex Risk?

The risk w.r.t. the square loss is:

$$\frac{1}{n}\sum_{i=1}^{n}\left(g(\vec{w}\cdot \operatorname{Aug}(\vec{x}^{(i)}))-y_{i}\right)^{2}$$

► If *g* is non-convex, the risk is in general no longer convex!

Non-Convexity

In general, NNs with non-linear activations have (highly) **non-convex** risk functions.

Training NNs

- SGD is still used to train neural networks, even though the risk is non-convex.
- May get stuck in local minima; depends heavily on starting position.

Downsides of NNs

NNs tend to be harder to train than linear models.

- ► How do we choose the architecture?
- Engineering challenges with large networks.

DSC 140A Probabilistic Modeling & Machine Knarning

Lecture 8 | Part 4

Demo

Feature Map

We have seen how to fit non-linear patterns with linear models via basis functions (i.e., a feature map).

$$H(\vec{x}) = w_0 + w_1 \phi_1(\vec{x}) + ... + w_k \phi_k(\vec{x})$$

- ► These basis functions are fixed **before** learning.
- **Downside:** we have to choose $\vec{\phi}$ somehow.

Learning a Feature Map

► **Interpretation:** The hidden layers of a neural network **learn** a feature map.

Each Layer is a Function

We can think of each layer as a function mapping a vector to a vector.

$$H^{(1)}(\vec{z}) = [W^{(1)}]^T \vec{z} + \vec{b}^{(1)}$$

$$\vdash H^{(1)}: \mathbb{R}^2 \to \mathbb{R}^3$$

$$H^{(2)}(\vec{z}) = [W^{(2)}]^T \vec{z} + \vec{b}^{(2)}$$

$$\vdash H^{(2)}: \mathbb{R}^3 \to \mathbb{R}^1$$

Each Layer is a Function

- ▶ The hidden layer performs a feature map from \mathbb{R}^2 to \mathbb{R}^3 .
- ▶ The output layer makes a prediction in \mathbb{R}^3 .
- Intuition: The feature map is learned so as to make the output layer's job "easier".

Demo

- ► Train a deep network to classify the data below.
- Hidden layers will learn a new feature map that makes the data linearly separable.

Demo

- We'll use three hidden layers, with last having two neurons.
- We can see this new representation!
- Plug in \vec{x} and see activations of last hidden layer.

Deep Learning

► The NN has learned a new **representation** in which the data is easily classified.

► For more: **DSC 140B - Representation Learning**.