
Lecture 8 | Part 1

Estimating Discrete Probabilities



Recap: Bayes Classifier▶ Bayes classifier: given a new point ⃗𝑥, predict:▶ Class 1 if ℙ(𝑌 = 1 | ⃗𝑋 = ⃗𝑥) > ℙ(𝑌 = 0 | ⃗𝑋 = ⃗𝑥)▶ Class 0 otherwise.▶ Alternative form:▶ Class 1 ifℙ( ⃗𝑋 = ⃗𝑥 | 𝑌 = 1)ℙ(𝑌 = 1) > ℙ( ⃗𝑋 = ⃗𝑥 | 𝑌 = 0)ℙ(𝑌 = 0)▶ Class 0 otherwise.▶ Optimal: smallest possible probability of error.



Problem▶ This assumed that we know the true
probabilities used by Nature.▶ Typically, we do not.▶ But we can estimate them from data.



Example: Flowers▶ Example: two species of flower (1 and 0); one
species tends to have more petals than the other.▶ Goal: given new flower with 𝑋 petals, predict
species, 𝑌.▶ Both 𝑋 and 𝑌 are discrete.



Before: Joint Distribution▶ Before: we somehow knew the joint distribution:𝑌 = 0 𝑌 = 1𝑋 = 0 0% 0%𝑋 = 1 5% 0%𝑋 = 2 10% 5%𝑋 = 3 15% 15%𝑋 = 4 5% 20%𝑋 = 5 0% 15%𝑋 = 6 0% 10%



Now▶ In practice, we do not know the joint distribution:𝑌 = 0 𝑌 = 1𝑋 = 0 ? ?𝑋 = 1 ? ?𝑋 = 2 ? ?𝑋 = 3 ? ?𝑋 = 4 ? ?𝑋 = 5 ? ?𝑋 = 6 ? ?



Data

▶ Suppose we observe 10 flowers.▶ We can use this data to estimate
probabilities.▶ E.g., what is ℙ(𝑋 = 4, 𝑌 = 1)?

X Y
5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0= 30%



Estimating Joint Probabilities▶ We estimate ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) with:ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) ≈ #(𝑋 = 𝑥 and 𝑌 = 𝑦)𝑛▶ E.g., estimate ℙ(𝑋 = 4, 𝑌 = 1):▶ E.g., estimate ℙ(𝑋 = 3, 𝑌 = 0):▶ E.g., estimate ℙ(𝑋 = 3, 𝑌 = 1):

X Y
5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0

3 = .3

30 =.2

8 =.0



Estimating Other Probabilities▶ Recall the other probabilities:▶ Marginals: ℙ(𝑋 = 𝑥) and ℙ(𝑌 = 𝑦).▶ Conditionals: ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) and ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥).▶ Can be calculated from the joint distribution.▶ Or an estimate of the joint distribution.▶ Can also estimate more directly.



Estimating Marginals

▶ We estimate ℙ(𝑌 = 𝑦) with:ℙ(𝑌 = 𝑦) ≈ #(𝑌 = 𝑦)𝑛▶ E.g., estimate ℙ(𝑌 = 1):▶ E.g., estimate ℙ(𝑌 = 0):
X Y
5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0

5 =.6

1 =.2



Estimating Marginals

▶ We estimate ℙ(𝑋 = 𝑥) with:ℙ(𝑋 = 𝑥) ≈ #(𝑋 = 𝑥)𝑛▶ E.g., estimate ℙ(𝑋 = 4):▶ E.g., estimate ℙ(𝑋 = 3):
X Y
5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0

3 = .3

7 =.2



Estimating Conditionals▶ We estimate ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) with:ℙ(𝑋 = 𝑥 | 𝑌 = 𝑦) ≈ #(𝑋 = 𝑥 and 𝑌 = 𝑦)#(𝑌 = 𝑦)▶ E.g., estimate ℙ(𝑋 = 4 | 𝑌 = 1):▶ E.g., estimate ℙ(𝑋 = 2 | 𝑌 = 0):
X Y
5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0

P(x(y)
=P(x,y)/p(y)

-

·-

3 =.5 -
6

-
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Estimating Conditionals▶ We estimate ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) with:ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) ≈ #(𝑋 = 𝑥 and 𝑌 = 𝑦)#(𝑋 = 𝑥)▶ E.g., estimate ℙ(𝑌 = 1 | 𝑋 = 4):▶ E.g., estimate ℙ(𝑌 = 0 | 𝑋 = 2):▶ E.g., estimate ℙ(𝑌 = 0 | 𝑋 = 6):

X Y
5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0

33 =1.8

o



Law of Large Numbers▶ As data size 𝑛 → ∞, these esimated probabilities
converge to their true values.1

1Assuming the data was sampled iid from the true distribution.



Bayes Classifier▶ The Bayes classifier assumed we knew the true
probabilities.▶ But we can still use it if we replace the true
probabilities with estimated probabilities.▶ No longer guaranteed to be optimal!



Bayes Classifier

▶ Given a new flower with 5 petals, what
is its class?▶ Idea: estimate ℙ(𝑌 = 1 | 𝑋 = 5).

X Y
5 0
3 0
4 1
4 1
2 0
5 1
2 1
5 1
4 1
3 0

-

:3 E



Multivariate Distributions▶ We can also estimate when there are
more variables in the same way.▶ E.g., estimate ℙ(𝑌 = 1 | 𝑋1 = 4, 𝑋2 = 2):▶ E.g., estimate ℙ(𝑋1 = 2):▶ E.g., estimate ℙ(𝑋1 = 5, 𝑋2 = 1 | 𝑌 = 1):

𝑋1 𝑋2 Y
5 1 0
3 3 0
4 2 1
4 5 1
2 3 0
5 2 1
2 1 1
5 1 1
4 2 0
3 6 0

->

-

↳
--
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Lecture 8 | Part 2

Histogram Density Estimators



Continuous Variables▶ We have seen how to estimate discrete
probabilities. What about continous variables?▶ Suppose there are two species of penguin; one
species tends to have longer flippers.▶ Goal: given a new penguin with flipper length𝑋 = 𝑥, predict its species, 𝑌.



Data▶ Recall: The distribution of a
continuous random variable is
described by a density.▶ Can we estimate a density from data
in the same way?▶ E.g.: marginal density for 𝑥, 𝑝𝑋(𝑥).
What is 𝑝𝑋(7)?𝑝𝑋(7) ?≈ #(𝑋 = 7)𝑛

X Y
7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0

⑭



Estimating Density▶ Since 𝑋 is continuous, most values of 𝑋 are never
seen in the data.▶ We need to do some smoothing.▶ One approach: histogram estimators.



Histogram Estimators▶ Suppose data 𝑥1, … , 𝑥𝑛 came from density 𝑓▶ Divide domain into 𝑘 bins: [𝑎𝑖, 𝑏𝑖).▶ Often equal-sized grid, though not necessary.▶ Within each bin 𝑖, estimate density:𝑓(𝑥) within bin 𝑖 ≈ # data points ∈ [𝑎𝑖, 𝑏𝑖)𝑛 × (𝑏𝑖 − 𝑎𝑖)⏟
“bin width”

**
xxx



Example

4 7 10 13 16[𝑎1, 𝑏1) = [4, 7) [𝑎2, 𝑏2) = [7, 10) [𝑎3, 𝑏3) = [10, 13) [𝑎4, 𝑏4) = [13, 16)

X Y
7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0

40.3rbinwidth

T ->
->

x x x x

m

->



Histogram Estimator

X Y
7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0

M



Histogram Estimator▶ Histogram estimators produce density functions.▶ E.g., what is the estimated 𝑝𝑋(4.7)?▶ integrates (sums) to 1.



Bin Number and Sizes▶ As we get more data, we can:▶ Decrease bin width.▶ Increase number of bins.



Bin Number and Sizes▶ As we get more data, we can:▶ Decrease bin width.▶ Increase number of bins.



Bin Number and Sizes▶ As we get more data, we can:▶ Decrease bin width.▶ Increase number of bins.



Bin Number and Sizes▶ As we get more data, we can:▶ Decrease bin width.▶ Increase number of bins.



Bin Number and Sizes▶ As we get more data, we can:▶ Decrease bin width.▶ Increase number of bins.



Bin Number and Sizes▶ As we get more data, we can:▶ Decrease bin width.▶ Increase number of bins.



Bin Number and Sizes▶ As we get more data, we can:▶ Decrease bin width.▶ Increase number of bins.



Law of Large Numbers▶ Eventually, as 𝑛 and # of bins→ ∞, the histogram
estimator approaches the true density:



Estimating Conditional Distributions▶ How do we estimate 𝑝(𝑥 | 𝑌 = 1) and 𝑝(𝑥 | 𝑌 = 0)?▶ The flipper length densities for species 1 and 0.▶ Restrict to data where 𝑌 = 1 (or 𝑌 = 0) and use
histogram estimator.



Estimating 𝑝(𝑥 | 𝑌 = 𝑦)
4 7 10 13 16

Estimate 𝑝(𝑥 | 𝑌 = 0)

X Y
7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Law of Large Numbers▶ Eventually, as 𝑛 and # of bins→ ∞, the histogram
estimators approach the true densities:



Estimating ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥)▶ How do we estimate ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) with
histograms?▶ Recall: useful for making predictions.▶ A discrete distribution, but conditioned on
continuous variable.▶ Particular 𝑥 may not be seen in data.



Estimating ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥)▶ Two equivalent approaches:
1. Count #(𝑌 = 1) and #(𝑌 = 0) within bin containing 𝑥.
2. Compute from Bayes’ rule and other estimates.



Approach #1: Directly▶ To estimate ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) with histograms when𝑌 is discrete and 𝑋 is continuous:
1. Find the bin containing 𝑥.
2. Estimate:ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) ≈ #(𝑌 = 𝑦 within this bin )#(points within this bin)



Approach #1: Directly

Example: estimate ℙ(𝑌 = 1 | 𝑋 = 4.3).

X Y
7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0



Approach #2: Bayes’ Rule
1. Estimate other densities / probabilities:𝑝(𝑥 | 𝑌 = 𝑦) ℙ(𝑌 = 𝑦) 𝑝𝑋(𝑥)
2. Use Bayes’ rule to combine them:ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 𝑝(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)𝑝𝑋(𝑥)



Approach #2: Bayes’ Rule▶ Using Bayes’ rule:ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥) = 𝑝(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)𝑝𝑋(𝑥)

Example: estimate ℙ(𝑌 = 1 | 𝑋 = 4.3).
X Y
7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0

*3.10 x%
-x3 x

I

to



Equivalence▶ Both approaches produce the same answer if
same bins used to estimate all densities.▶ Related via Bayes’ rule.



Prediction▶ Suppose there are two species of penguin; one
species tends to have longer flippers.▶ Goal: given a new penguin with flipper length𝑋 = 𝑥, predict its species, 𝑌.



Example

Example: what is predicted species when 𝑋 = 10.8?

X Y
7.2 0
11.3 1
8.0 1
5.1 0
5.6 1
12.3 1
13.1 1
10.9 0
12.0 1
5.0 0

(P(4 =1)X=1.0



Over- and Under-fitting▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.



Over- and Under-fitting▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.



Over- and Under-fitting▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.



Over- and Under-fitting▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.



Over- and Under-fitting▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.



Over- and Under-fitting▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.



Over- and Under-fitting▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.



Over- and Under-fitting▶ The number of bins must be chosen
appropriately to avoid over- or under-fitting.

M



Lecture 8 | Part 3

Multivariate Histogram Density Estimators



Multivariate Estimation▶ In practice, we typically want to predict 𝑌 from
many variables, 𝑋1, 𝑋2, …▶ How do we estimate densities 𝑝( ⃗𝑥) of several
variables?



Histogram Estimators▶ Histograms naturally generalize to 𝑑 > 1:▶ Suppose data ⃗𝑥(1), … , ⃗𝑥(𝑛) came from density 𝑓▶ Divide ℝ𝑑 into rectangular bins bins with regular
side-lengths ℓ1, ℓ2, … , ℓ𝑑▶ Within a bin, estimate density:𝑓( ⃗𝑥) within bin ≈ # data points ∈ [𝑎𝑖, 𝑏𝑖)𝑛 × (ℓ1 × ℓ2 × ⋯ × ℓ𝑑)⏟⏟⏟⏟⏟⏟⏟⏟⏟

“bin volume”



Example: 𝑑 = 2

1

1

2

2

3

3

4

4

5

5 𝑋1 𝑋2 Y
4.1 1.8 0
3.6 3.0 0
4.2 2.2 1
4.2 2.4 1
2.3 3.2 0
4.9 2.4 1
2.1 0.8 1
3.2 1.1 1
4.7 2.3 0
3.8 4.9 0

E.g., estimate: 1) 𝑝𝑥1,𝑥2(2.3, 2.5) 2) 𝑝𝑥1,𝑥2(3.3, 2.5)

Fotil
- 2.2.9

⑥]



Estimating 2-d Densities



Estimating 2-d Densities



Estimating in High Dimensions▶ Histogram estimators can be used to estimate
high-dimensional densities, in principle.▶ That is, densities of many continuous variables.▶ But they typically do not work well due to the
curse of dimensionality.



Curse of Dimensionality▶ Intuition: need sufficiently-many points in each
bin to make good estimates.▶ Law of large numbers.▶ Number of points needed is proportional to
number of bins.▶ Many bins in high dimensions.



Curse of Dimensionality▶ Suppose we have two continuous variables, 𝑋1
and 𝑋2, each taking values between 0 and 1.▶ Divide each feature into 5 equal bins:0 0.2 0.4 0.6 0.8 1



Curse of Dimensionality

▶ Total number of bins: 5 × 5 = 25



Curse of Dimensionality▶ Suppose we have two continuous variables, 𝑋1,𝑋2, 𝑋3, each taking values between 0 and 1.▶ Divide each feature into 5 equal bins:0 0.2 0.4 0.6 0.8 1



Curse of Dimensionality

▶ Total number of bins: 5 × 5 × 5 = 53 = 125



Curse of Dimensionality▶ With 𝑑 features, we’d have 5𝑑 bins.▶ Example: with 20 features, we’d have520 ≈ 10 trillion





Curse of Dimensionality▶ To accurately estimate densities in more than a
few dimensions, we need too much data.▶ Most bins will be empty.▶ And so we take different approaches.



A Different Approach▶ Histogram estimators don’t make assumptions
about the shape of the density.▶ Good: very flexible.▶ Bad: requires a lot of data.▶ Next: Assume a particular shape (e.g., a
Gaussian) and try to learn it from data.


