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Parametric Density Estimation



Bayes Classifier

Recall the Bayes Classifier: predict

1, ifP(Y=1]X=X)>P(Y=0]X=X),
0, otherwise.

Equivalently, using Bayes' rule:

1, i py(x| Y = P(Y = 1) > py(x| Y = 0)P(Y = 0),
0, otherwise.



Estimating Densities
We rarely know the true distribution.
We must estimate it from data.

When X is continuous, we estimate density.



Last Time: Histogram Estimators

Histograms provide one way of estimating
densities.

0.20 = p(x|Y=1)A(Y=1)
= py(x|Y=0)A(Y=0)

—0.05 .




Histogram Drawbacks

We saw that histograms need massive amounts
of data in high dimensions.

The Curse of Dimensionality.



Observation

Histogram estimators assume nothing about the
shape of the true density.

This makes them very flexible, but also
data-hungry.

Idea: Assume that the true, underlying density
has a certain form.



Example: Gaussians

Often assume that the true distribution is
Gaussian (aka, Normal).
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Example: Gaussians

Recall: the pdf of the
Gaussian distribution:
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p(x; u,0) =

p and o are parameters
u controls center

o controls width




Gaussian

Central Limit Theorem: sums of independent random
variables are Gaussian
Examples: test scores, heights, measurement errors, ...
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Parametric Distributions

A parametric distribution is totally determined
by a finite number of parameters.

Example: knowing p and o tells you everything
about a Gaussian distribution.



Other Parametric Distributions
There are many parametric distributions.
Discrete: Bernoulli, Multinomial, Poisson, ...

Continuous: Log-normal, Gamma, Pareto, ...



Example: Lognormal

Product of many independent positive random numbers.
Example: length of comments in an internet forum
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Example: Gamma

Examples: wait times, size of rainfalls, insurance claims, ...
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Example: Pareto

Examples: distribution of wealth, size of meteorites, ...
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Parametric Density Estimation

In parametric density estimation, we assume

data comes from some parametric density.
E.g., Gaussian, Log-Normal, Pareto, etc.

But we don’t know the parameters.

Use data to estimate the parameters.



Non-Parametric Density Estimation

Contrast this with estimating density with
histograms.

There were no parameters controlling the shape
of the density.

Histograms are non-parametric density
estimators.
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Parametric Density Estimation

Suppose we have data x(, ..., x(" e R.

Assume it came from a parametric distribution.
Say, a Gaussian.

What were the parameter values used to
generate the data?

Using data to guess p and o is called estimating
the parameters.
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Unlikely



Likely



Intuition

Some parameter choices seem more likely than
others.

That is, there is a greater chance that the data
could have been generated by them.

How can we quantify this?



Intuition

Let p be the Guassian probability density function.
p(x"; u, o) quantifies how likely it is to see x® if
parameters py and o are used.




Assume that x(, ..., x™ are all sampled indepen-
dently from a density with parameters p, 0.

Think of p(x; u, o) as the “chance” of seeing x
under parameters y and o.

What is the chance of seeing x(" and x® and x©
and ... and x"?




Intuition

p(x"; 4, 0) x p(x1; i, @) x - x p(x\"; 4, 0) quantifies
likelihood of seeing x(1), ..., x{" simultaneously.

In fact, it is the joint density of the data.

But instead think of this as a function of y and o.



Likelihood

The likelihood of p and o with respect to data
x, ., x™M s

L, 0; XD, ..., x1) = p(xV; p, 0) x p(x@; p, 0) x =+ x p(x™; p, 0)

=ﬁpx(’,u,
i=1



Likelihood

The likelihood function takes in parameters p
and o and returns a real number.

Interpretation: likelihood that data was
generated by this choice of y and .

Goal: find p and o that maximize the likelihood.



http://dscl40a.com/static/vis/mle/



Maximizing Likelihood

To maximize £(y, 0), we might take derivatives %

oL
and §z, set to 0, solve.

But the likelihood is often difficult to work with.



Example: Gaussian

Assume that p is the Gaussian pdf.

=(x-p)* u)?
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p(x;y,0) = OJ—e 2

Then the likelihood function is:
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J - j{: b
Log Likelihood

It is typically easier to work with the log
likelihood instead.

L(p, 0) = In L, 0)

Fact: Because In x is monotonically increasing, a
maximizer of In £ also maximizes £



Procedure: Gaussian
Write the log likelihood function L.
Take derivatives 0£/op and 9L /d0

Set to zero and solve for py and o.
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Pl
Recall: Log Properties o ()
If a and b are positive: In(axb) =lna+Inb

If a and b are positive: In(a/b) =lna-Inb

If a is positive: Ina” =plna



Step 1: Write Log Likelihood

Write the log likelihood function for the Normal

distribution. ‘ i ((ci}‘oz
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Step 1: Write Log Likelihood

Write the log likelihood function for the Normal
distribution. “©

e &yt 2 e,
,Qw” -(z}:—?— :Z'/Q"‘[rﬁr_re 2

i T;‘\I;\" v
- Ealg) - wlet),

-3 S () e



Step 2: Differentiate

We have: £=3", [ lno-In n—(x()“)z]

Compute oL dp:
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Step 2: Differentiate J ,QM
=

We have: £=3", [— lno-Iny2m- (X(Z);f)z]
Compute aL/d0:



Step 3: Solve

We have oL/op = L 37 (x - p)
Solve oL /oy = 0 for p.
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Step 3: Solve

(i)
We have oL /o0 = 3 [ + & 3“)]
SolveaL/ao 0 for o.
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MLEs for Gaussian Distribution

We have found the maximum likelihood
estimates for the Gaussian distribution:
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“Fitting” a Guassian

Suppose we wish to “fit” a Gaussian to data
xM . x(m),

The maximum likelihood approach:
Compute:

1, 1,
Huie = 5 Z x Omie =4[ Z(X(') - He)®
i=1 i=1

Use these as parameters of the Gaussian.



Example
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In General

Maximum Likelihood Estimation (MLE) can be
used for a variety of densities.

Suppose density p has parameters 0,, ..., 6,

Write log likelihood function:

In £(6 Z ln p(x(), s Bp)

Compute derivatives: 0£/06,,0£/88,,...,0L /8,

Set derivates to zero, solve for 6,,..., 0,.



In Practice

The MLE for a parameter only needs to be
derived once.

Many textbooks, statistics packages, and
Wikipedia list the MLE parameter estimators.
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Making Predictions

We observe a data set {(x{, y.)} of flipper lengths
and penguin species (0 or 1).

Task: Given the flipper length of a new penguin,
what is its species?

Bayes’ classifier: predict

1, i pe(x | Y = DP(Y = 1) > py(x | Y = 0)P(Y = 0),
0, otherwise.



Estimating Densities
We must estimate py(x|Y =0)and py(x|Y =1).
Approach 1: Non-parametric (histograms)

Approach 2: Parametric



Approach 1: Non-Parametric

Estimate p,(x|Y = 0) and p,(x | Y = 1) with histograms.

0.20 . Syx|Y=1)P(Y=1)
m py(x|Y=0)A(Y=0)

—0.05 -




Approach 2: Parametric
Must choose a parametric distribution.
Plotting a histogram, data looks roughly normal.

We will fit Gaussians.



Approach 2: Parametric

Estimate p,(x|Y = 0) and p,(x| Y = 1) by fitting Gaussians
with MLE.
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Data Requirements

Suppose the underlying distribution that

produced the data actually was a Gaussian.
Or close to one.

The parametric approach will require less data
than the non-parametric.



Data Requirements
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Data Requirements
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Mis-specification

However, suppose the underlying distribution is
not Gaussian.

No amount of data will allow the parametric

approach to get close.
The model has been mis-specified.

But the non-parametric approach will be close,
eventually.



Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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High Dimensions

Non-parametric approaches can fit arbitrary

densities, but they require lots of data.
Especially in high dimensions!

Parametric approaches require less data,
provided that they are correctly specified.

Next time: parametric density estimation in high
dimensions.



