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Parametric Density Estimation



Bayes Classifier

▶ Recall the Bayes Classifier: predict

{
1, if ℙ(𝑌 = 1 | ⃗𝑋 = ⃗𝑥) > ℙ(𝑌 = 0 | ⃗𝑋 = ⃗𝑥),
0, otherwise.

▶ Equivalently, using Bayes’ rule:

{
1, if 𝑝𝑋(𝑥 | 𝑌 = 1)ℙ(𝑌 = 1) > 𝑝𝑋(𝑥 | 𝑌 = 0)ℙ(𝑌 = 0),
0, otherwise.



Estimating Densities

▶ We rarely know the true distribution.

▶ We must estimate it from data.

▶ When ⃗𝑋 is continuous, we estimate density.



Last Time: Histogram Estimators
▶ Histograms provide one way of estimating
densities.
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Histogram Drawbacks

▶ We saw that histograms need massive amounts
of data in high dimensions.

▶ The Curse of Dimensionality.



Observation

▶ Histogram estimators assume nothing about the
shape of the true density.

▶ This makes them very flexible, but also
data-hungry.

▶ Idea: Assume that the true, underlying density
has a certain form.



Example: Gaussians
▶ Often assume that the true distribution is
Gaussian (aka, Normal).
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Example: Gaussians
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▶ Recall: the pdf of the
Gaussian distribution:

𝑝(𝑥; 𝜇, 𝜎) = 1
𝜎√2𝜋

𝑒
−(𝑥−𝜇)2

2𝜎2

▶ 𝜇 and 𝜎 are parameters
▶ 𝜇 controls center
▶ 𝜎 controls width



Gaussian
▶ Central Limit Theorem: sums of independent random
variables are Gaussian

▶ Examples: test scores, heights, measurement errors, ...
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Parametric Distributions

▶ A parametric distribution is totally determined
by a finite number of parameters.

▶ Example: knowing 𝜇 and 𝜎 tells you everything
about a Gaussian distribution.



Other Parametric Distributions

▶ There are many parametric distributions.

▶ Discrete: Bernoulli, Multinomial, Poisson, ...

▶ Continuous: Log-normal, Gamma, Pareto, ...



Example: Lognormal
▶ Product of many independent positive random numbers.
▶ Example: length of comments in an internet forum
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Example: Gamma
▶ Examples: wait times, size of rainfalls, insurance claims, ...
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Example: Pareto
▶ Examples: distribution of wealth, size of meteorites, ...
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Parametric Density Estimation

▶ In parametric density estimation, we assume
data comes from some parametric density.
▶ E.g., Gaussian, Log-Normal, Pareto, etc.

▶ But we don’t know the parameters.

▶ Use data to estimate the parameters.



Non-Parametric Density Estimation

▶ Contrast this with estimating density with
histograms.

▶ There were no parameters controlling the shape
of the density.

▶ Histograms are non-parametric density
estimators.
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Maximum Likelihood Estimation



Parametric Density Estimation

▶ Suppose we have data 𝑥(1), … , 𝑥(𝑛) ∈ ℝ.

▶ Assume it came from a parametric distribution.
▶ Say, a Gaussian.

▶ What were the parameter values used to
generate the data?

▶ Using data to guess 𝜇 and 𝜎 is called estimating
the parameters.





Unlikely



Likely



Intuition

▶ Some parameter choices seem more likely than
others.

▶ That is, there is a greater chance that the data
could have been generated by them.

▶ How can we quantify this?



Intuition
▶ Let 𝑝 be the Guassian probability density function.
▶ 𝑝(𝑥(𝑖); 𝜇, 𝜎) quantifies how likely it is to see 𝑥(𝑖) if
parameters 𝜇 and 𝜎 are used.



Exercise

Assume that 𝑥(1), … , 𝑥(𝑛) are all sampled indepen-
dently from a density with parameters 𝜇, 𝜎.

Think of 𝑝(𝑥(𝑖); 𝜇, 𝜎) as the “chance” of seeing 𝑥(𝑖)
under parameters 𝜇 and 𝜎.

What is the chance of seeing 𝑥(1) and 𝑥(2) and 𝑥(3)
and … and 𝑥(𝑛)?



Intuition

▶ 𝑝(𝑥(1); 𝜇, 𝜎) ×𝑝(𝑥(2); 𝜇, 𝜎) ×⋯×𝑝(𝑥(𝑛); 𝜇, 𝜎) quantifies
likelihood of seeing 𝑥(1), … , 𝑥(𝑛) simultaneously.

▶ In fact, it is the joint density of the data.

▶ But instead think of this as a function of 𝜇 and 𝜎.



Likelihood
▶ The likelihood of 𝜇 and 𝜎 with respect to data
𝑥(1), … , 𝑥(𝑛) is:

L(𝜇, 𝜎; 𝑥(1), … , 𝑥(𝑛)) = 𝑝(𝑥(1); 𝜇, 𝜎) × 𝑝(𝑥(2); 𝜇, 𝜎) × ⋯ × 𝑝(𝑥(𝑛); 𝜇, 𝜎)

=
𝑛

∏
𝑖=1
𝑝(𝑥(𝑖); 𝜇, 𝜎)



Likelihood

▶ The likelihood function takes in parameters 𝜇
and 𝜎 and returns a real number.

▶ Interpretation: likelihood that data was
generated by this choice of 𝜇 and 𝜎.

▶ Goal: find 𝜇 and 𝜎 that maximize the likelihood.



http://dsc140a.com/static/vis/mle/

http://dsc140a.com/static/vis/mle/


Maximizing Likelihood

▶ To maximize L(𝜇, 𝜎), we might take derivatives 𝜕L
𝜕𝜇

and 𝜕L
𝜕𝜎 , set to 0, solve.

▶ But the likelihood is often difficult to work with.



Example: Gaussian

▶ Assume that 𝑝 is the Gaussian pdf.

𝑝(𝑥; 𝜇, 𝜎) = 1
𝜎√2𝜋

𝑒
−(𝑥−𝜇)2

2𝜎2

▶ Then the likelihood function is:

L(𝜇, 𝜎) =
𝑛

∏
𝑖=1

( 1
𝜎√2𝜋

𝑒
−(𝑥(𝑖)−𝜇)2

2𝜎2 )



Log Likelihood

▶ It is typically easier to work with the log
likelihood instead.

̃L(𝜇, 𝜎) = lnL(𝜇, 𝜎)

▶ Fact: Because ln 𝑥 is monotonically increasing, a
maximizer of lnL also maximizes L



Procedure: Gaussian

1. Write the log likelihood function ̃L.

2. Take derivatives 𝜕 ̃L/𝜕𝜇 and 𝜕 ̃L/𝜕𝜎

3. Set to zero and solve for 𝜇 and 𝜎.



Recall: Log Properties

▶ If 𝑎 and 𝑏 are positive: ln(𝑎 × 𝑏) = ln 𝑎 + ln 𝑏

▶ If 𝑎 and 𝑏 are positive: ln(𝑎/𝑏) = ln 𝑎 − ln 𝑏

▶ If 𝑎 is positive: ln 𝑎𝑝 = 𝑝 ln 𝑎



Step 1: Write Log Likelihood

▶ Write the log likelihood function for the Normal
distribution.



Step 2: Differentiate

▶ We have: ̃L = ∑𝑛𝑖=1 [− ln 𝜎 − ln√2𝜋 −
(𝑥(𝑖)−𝜇)2

2𝜎2 ]
▶ Compute 𝜕 ̃L/𝜕𝜇:



Step 2: Differentiate

▶ We have: ̃L = ∑𝑛𝑖=1 [− ln 𝜎 − ln√2𝜋 −
(𝑥(𝑖)−𝜇)2

2𝜎2 ]
▶ Compute 𝜕 ̃L/𝜕𝜎:



Step 3: Solve
▶ We have 𝜕𝐿̃/𝜕𝜇 = 1

𝜎2 ∑
𝑛
𝑖=1(𝑥(𝑖) − 𝜇)

▶ Solve 𝜕𝐿̃/𝜕𝜇 = 0 for 𝜇.



Step 3: Solve

▶ We have 𝜕𝐿̃/𝜕𝜎 = ∑𝑛𝑖=1 [−
1
𝜎 +

(𝑥(𝑖)−𝜇)2

𝜎3 ]
▶ Solve 𝜕𝐿̃/𝜕𝜎 = 0 for 𝜎.



MLEs for Gaussian Distribution
▶ We have found the maximum likelihood
estimates for the Gaussian distribution:

𝜇MLE =
1
𝑛

𝑛

∑
𝑖=1
𝑥(𝑖) 𝜎MLE = √

1
𝑛

𝑛

∑
𝑖=1
(𝑥(𝑖) − 𝜇MLE)2



“Fitting” a Guassian

▶ Suppose we wish to “fit” a Gaussian to data
𝑥(1), … , 𝑥(𝑛).

▶ The maximum likelihood approach:
1. Compute:

𝜇MLE =
1
𝑛

𝑛

∑
𝑖=1
𝑥(𝑖) 𝜎MLE = √

1
𝑛

𝑛

∑
𝑖=1
(𝑥(𝑖) − 𝜇MLE)2

2. Use these as parameters of the Gaussian.



Example
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In General
▶ Maximum Likelihood Estimation (MLE) can be
used for a variety of densities.

▶ Suppose density 𝑝 has parameters 𝜃1, … , 𝜃𝑘

1. Write log likelihood function:

lnL(𝜃1, … , 𝜃𝑘) =
𝑛

∑
𝑖=1
ln 𝑝(𝑥(1), … , 𝑥(𝑛); 𝜃1, … , 𝜃𝑘)

2. Compute derivatives: 𝜕 ̃L/𝜕𝜃1, 𝜕 ̃L/𝜕𝜃2, … , 𝜕 ̃L/𝜕𝜃𝑘

3. Set derivates to zero, solve for 𝜃1, … , 𝜃𝑘.



In Practice

▶ The MLE for a parameter only needs to be
derived once.

▶ Many textbooks, statistics packages, and
Wikipedia list the MLE parameter estimators.
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Parametric vs. Non-Parametric Density Estimation



Making Predictions

▶ We observe a data set {(𝑥(𝑖), 𝑦𝑖)} of flipper lengths
and penguin species (0 or 1).

▶ Task: Given the flipper length of a new penguin,
what is its species?

▶ Bayes’ classifier: predict

{
1, if 𝑝𝑋(𝑥 | 𝑌 = 1)ℙ(𝑌 = 1) > 𝑝𝑋(𝑥 | 𝑌 = 0)ℙ(𝑌 = 0),
0, otherwise.



Estimating Densities

▶ We must estimate 𝑝𝑋(𝑥 | 𝑌 = 0) and 𝑝𝑋(𝑥 | 𝑌 = 1).

▶ Approach 1: Non-parametric (histograms)

▶ Approach 2: Parametric



Approach 1: Non-Parametric
▶ Estimate 𝑝𝑋(𝑥 | 𝑌 = 0) and 𝑝𝑋(𝑥 | 𝑌 = 1) with histograms.
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Approach 2: Parametric

▶ Must choose a parametric distribution.

▶ Plotting a histogram, data looks roughly normal.

▶ We will fit Gaussians.



Approach 2: Parametric
▶ Estimate 𝑝𝑋(𝑥 | 𝑌 = 0) and 𝑝𝑋(𝑥 | 𝑌 = 1) by fitting Gaussians
with MLE.
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Data Requirements

▶ Suppose the underlying distribution that
produced the data actually was a Gaussian.
▶ Or close to one.

▶ The parametric approach will require less data
than the non-parametric.



Data Requirements
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Data Requirements
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Mis-specification

▶ However, suppose the underlying distribution is
not Gaussian.

▶ No amount of data will allow the parametric
approach to get close.
▶ The model has been mis-specified.

▶ But the non-parametric approach will be close,
eventually.



Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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Parametric vs. Non-Parametric
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High Dimensions

▶ Non-parametric approaches can fit arbitrary
densities, but they require lots of data.
▶ Especially in high dimensions!

▶ Parametric approaches require less data,
provided that they are correctly specified.

▶ Next time: parametric density estimation in high
dimensions.


