Probatilistic Modeling $\&$ Machine Learning
Lecture 13 Part 1
Bayes with Multiple Features

Recap

- Bayes Classifier: predict y that maximizes

$$
\mathbb{P}(Y=y \mid X=x)
$$

- Alternatively: predict y that maximizes

$$
p_{x}(x \mid Y=y) \mathbb{P}(Y=y)
$$

- We must estimate these probabilities/densities.

Example: NBA Players

- Guard and Forward are two positions in basketball.
- Forwards tend to be larger than guards.

Example: NBA Players

- Suppose we have a data set of n NBA players:
X_{1} : the player's height
- X_{2} : the player's weight
- Y: the player's position ($1=$ guard, $0=$ forward)
- Given: a new player's height and weight, predict their position.

Bayes in ≥ 2 Dimensions

- With one feature, Bayes said to pick y maximizing:

$$
p_{X}(x \mid Y=y) \mathbb{P}(Y=y)
$$

- With k features, pick y maximizing:

$$
p_{\vec{x}}(\vec{x} \mid Y=y) \mathbb{P}(Y=y)
$$

- \vec{x} is the feature vector. Here: (height, weight) ${ }^{T}$
- We need to estimate density $p(\vec{x} \mid Y=y)$ for each class.

Estimating with Histograms

Estimating with Histograms

Estimating with Histograms

Predicting with Histograms

To predict the class of an input \vec{x} :

1. Use histograms to estimate $p_{\vec{x}}(\vec{x} \mid Y=y)$ for each class separately.
2. Predict the class y maximizing

$$
p_{\vec{x}}(\vec{x} \mid Y=y) \mathbb{P}(Y=y)
$$

Histogram Estimators

- Histogram density estimators are very flexible.
- But suffer heavily from curse of dimensionality.
- Not feasible for estimating density in more than a few dimensions.

Today

- Last time: we saw the parametric approach to density estimation.
- Pick a parametric distribution (e.g., Gaussian)
- Find parameters by maximizing likelihood
- We saw how to do this for one-dimensional data.
- Today: multidimensional data.

In particular...

Today: multivariate Gaussian density estimation.

- That is: fitting multivariate Gaussians to data with maximum likelihood.

$$
\text { DSC } 140 A
$$

Multivariate Gaussians

- In 1 dimension, a Gaussian seemed to describe distribution of heights.
- Does a multivariate Gaussian describe distribution of heights and weights?

"Deriving" Multivariate Gaussians

Setting \#1

- Suppose we have d independent random variables X_{1}, \ldots, X_{d}.
- Assume that each is Gaussian; different mean, but same variance:

$$
x_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma^{2}\right), \quad x_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma^{2}\right), \ldots, \quad x_{d} \sim \mathcal{N}\left(\mu_{d}, \sigma^{2}\right) .
$$

Setting \#1

- What is the joint density $p\left(x_{1}, x_{2}, \ldots, x_{d}\right)$?
- Since we assumed X_{1}, \ldots, X_{d} are independent:

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{d}\right) & =p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{d}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}{ }^{\left.-\frac{\mu_{2}}{2}\left(x-\mu_{1}\right)^{2} / \sigma^{2}\right)}\right) \cdot\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{-1}{2}\left(x-\mu_{2}\right)^{2} / \sigma^{2}}\right) \cdots\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(x-\mu_{d}\right)^{2} / \sigma^{2}}\right)
\end{aligned}
$$

Setting \#1

- What is the joint density $p\left(x_{1}, x_{2}, \ldots, x_{d}\right)$?
- Since we assumed X_{1}, \ldots, X_{d} are independent:

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{d}\right) & =p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{d}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(x-\mu_{1}\right)^{2} / \sigma^{2}}\right) \cdot\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(x-\mu_{2}\right)^{2} / \sigma^{2}}\right) \cdots\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(x-\mu_{d}\right)^{2} / \sigma^{2}}\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-\frac{\left(x_{1}-\mu_{1}\right)^{2}+\left(x_{2}-\mu_{2}\right)^{2}+\ldots+\left(x_{d}-\mu_{d}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Setting \#1

- What is the joint density $p\left(x_{1}, x_{2}, \ldots, x_{d}\right)$?
- Since we assumed X_{1}, \ldots, X_{d} are independent:

$$
\begin{aligned}
p\left(X_{1}, x_{2}, \ldots, x_{d}\right) & =p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{d}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(x-\mu_{1}\right)^{2} / \sigma^{2}}\right) \cdot\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(x-\mu_{2}\right)^{2} / \sigma^{2}}\right) \ldots\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(x-\mu_{d}\right)^{2} / \sigma^{2}}\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-\frac{\left(x_{1}-\mu_{1}\right)^{2}+\left(x_{2}-\mu_{2}\right)^{2}+\ldots+\left(x_{d}-\mu_{d}\right)^{2}}{2 \sigma^{2}}\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-\frac{\|\vec{x}-\vec{\mu}\|^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Setting \#1

Setting \#1: Spherical Gaussians

$$
p(\vec{x})=\frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-\frac{1}{2} \frac{\|\vec{x}-\vec{\mu}\|^{2}}{\sigma^{2}}\right)
$$

- Contours are (hyper)spheres.
- Every slice through middle gives same Gaussian.

Setting \#2

- Still assume X_{1}, \ldots, X_{d} are independent, Gaussian.
- But they now have different variances:

$$
x_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \quad x_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right), \ldots, \quad X_{d} \sim \mathcal{N}\left(\mu_{d}, \sigma_{d}^{2}\right) .
$$

Setting \#2

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{d}\right) \\
& \quad=\left(\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} e^{-\frac{1}{2}\left(x-\mu_{1}\right)^{2} / \sigma_{d}^{2}}\right) \cdot\left(\frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} e^{-\frac{1}{2}\left(x-\mu_{2}\right)^{2} / \sigma_{2}^{2}}\right) \cdots\left(\frac{1}{\sqrt{2 \pi \sigma_{d}^{2}}} e^{\left.-\frac{1}{2}\left(x-\mu_{d}\right)^{2} / \sigma_{d}^{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right) \quad A^{-1}=\left(\begin{array}{cc}
1 / a_{1} & 0 \\
1 & 1 / a_{2} \\
\text { Settirig } \# 2
\end{array} \quad C^{-1}=\left(\begin{array}{ccc}
1 / \sigma_{1}^{2} & 1 / \sigma^{2} & 0 \\
& 0 & \ddots \\
& & 1 / \sigma_{d}^{2}
\end{array}\right)\right. \\
& \vec{x}=\left(x_{1}, x_{2}\right)^{\top} \quad \mu=\left(\mu_{1}, \mu_{2}\right)^{\top} \\
& p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{d}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{d / 2} \sigma_{1} \cdot \sigma_{2} \cdots \sigma_{d}} \exp \left(-\frac{1}{2}\left[\frac{\left[x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}+\ldots+\frac{\left(x_{d}-\mu_{d}\right)^{2}}{\sigma_{d}^{2}}\right]\right) \\
& C^{-1}(\vec{x}-\vec{\mu})=\left(\begin{array}{c}
1 / \sigma_{1}^{2} \\
0 \\
0 \\
\hline\left(2 / \sigma_{2}^{2} \sigma_{2}^{2} \cdot \sigma_{2} \cdot \cdots \sigma_{d}\right.
\end{array}\right)\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}=\left(\begin{array}{l}
\sigma_{1}^{2} \\
\left(x_{1}-\mu_{1}\right) / \sigma_{1}^{2} \\
\left(x_{2}-\mu_{2}\right) / \sigma_{2}^{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x} A_{x} \quad \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}= \\
& \begin{array}{c}
C^{-1}(\vec{x}-\vec{\mu})=\left(\begin{array}{cc}
1 / \sigma_{1}^{2} & 0 \\
0 & 1 / \sigma_{2}^{2}
\end{array}\right)\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}=\binom{\left(x_{1}-\mu_{1}\right) / \sigma_{1}^{2}}{\left(x_{2}-\mu_{2}\right) / \sigma_{2}^{2}} \\
p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{d}\right)
\end{array} \\
& p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{d}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{d / 2} \sigma_{1} \cdot \sigma_{2} \cdots \sigma_{d}} \exp \left(-\frac{1}{2}\left[\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}+\ldots+\frac{\left(x_{d}-\mu_{d}\right)^{2}}{\sigma_{d}^{2}}\right]\right) \\
& (\vec{x}-\mu)^{\top} C^{-1}(\vec{x}-\mu)=\left(\begin{array}{ll}
x_{1} \mu_{1} & x_{i} \mu_{2}
\end{array}\right)\binom{\left(x_{1}-\mu_{1}\right) / \sigma_{1}^{2}}{\left(x_{2}-\mu_{2}\right) / \sigma_{2}^{2}}=\begin{array}{c}
\left(x_{1}-\mu_{1}\right)^{2} / \sigma_{1}^{2} \\
+ \\
\left(x_{2}-\mu_{2}\right)^{2} / \sigma_{2}^{2}
\end{array}
\end{aligned}
$$

Setting \#2

- Define

$$
C=\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \sigma_{d}^{2}
\end{array}\right)
$$

Then:

$$
p(\vec{x})=\frac{1}{(2 \pi)^{d / 2}|C|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{\top} C^{-1}(\vec{x}-\vec{\mu})\right)
$$

where $|C|$ is the determinant of C.

Setting \#2: Axis-Aligned Gaussians

$$
p(\vec{x})=\frac{1}{(2 \pi)^{d / 2}|c|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} C^{-1}(\vec{x}-\vec{\mu})\right) ~ \sigma_{2}^{2}
$$

- Contours are axis-aligned (hyper)ellipses.
- C is the covariance matrix.

D Diagonal.

- Entries are variances.

Setting \#3: General Gaussians

- We have assumed that X_{1}, \ldots, X_{d} are independent. Now assume that they're not. Define covariance:

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

$$
\operatorname{Var}\left(X_{i}\right)=\operatorname{Cov}\left(X_{i}, X_{i}\right)
$$

Covariance

Covariance measures how much two quantities vary together.

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

Setting \#3: General Gaussians

- Now the covariance matrix has off-diagonal elements:

$$
C=\left(\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{d}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{2}, X_{d}\right) \\
\ldots & \ldots & \cdots & \cdots \\
\operatorname{Cov}\left(X_{d}, X_{1}\right) & \operatorname{Cov}\left(X_{d}, X_{2}\right) & \cdots & \operatorname{Var}\left(X_{d}\right)
\end{array}\right)
$$

\Rightarrow Since $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{j}, X_{i}\right), C$ is symmetric.

Setting \#3: General Gaussians

$$
p(\vec{x})=\frac{1}{(2 \pi)^{d / 2}|C|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} C^{-1}(\vec{x}-\vec{\mu})\right)
$$

Contours are general (hyper)ellipses.
C need not be diagonal.

Overview

- The probability density function for a multivariate Gaussian distribution is:

$$
p(\vec{x})=\frac{1}{(2 \pi)^{d / 2}|C|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} C^{-1}(\vec{x}-\vec{\mu})\right)
$$

- Here, C is the covariance matrix.

Overview

- There are three cases:

1. C is diagonal, with all the same entries.
2. C is diagonal, with different entries.
3. C is not diagonal.

140A
Probabilistic Modeling \& Machine Learning
Lecture 13 | Part 3
Fitting Multivariate Gaussians

Fitting Multivariate Gaussians

- Suppose $\vec{x}^{(1)}, \ldots, \vec{x}^{(n)}$ came from a multivariate Gaussian.
- What were the parameters of that Gaussian?
- We can use the principle of maximum likelihood.

What are the parameters?

$$
p(\vec{x})=\frac{1}{(2 \pi)^{d / 2}|C|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{\top} C^{-1}(\vec{x}-\vec{\mu})\right)
$$

- $\vec{\mu}$: controls Gaussian's location
- C: controls Gaussian's shape

Estimating $\vec{\mu}$

The maximum likelihood estimator for μ is:

$$
\begin{aligned}
& \vec{\mu}_{\text {MLE }}=\frac{1}{n} \sum_{i=1}^{n} \vec{x}^{(i)} \\
& \mathbb{R}^{d}
\end{aligned}
$$

Estimating C

- First: make assumptions on covariance matrix.
- In order from strict to weak:
\downarrow Spherical: C is diagonal, with all the same entries. - Axis-Aligned: C is diagonal, with different entries.
- General: C is not diagonal.
- The weaker the assumptions, the more parameters to estimate.

Fitting Spherical Gaussians

- Only one variance parameter: σ^{2}.
- The density function becomes:

$$
p(\vec{x})=\frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-\frac{(\vec{x}-\vec{\mu})^{T}(\vec{x}-\vec{\mu})}{2 \sigma^{2}}\right)
$$

- The maximum likelihood estimator:

$$
\sigma_{\text {MLE }}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|\vec{x}^{(i)}-\vec{\mu}_{\text {MLE }}\right\|^{2}
$$

Example: NBA Data

- What if we fit a spherical Gaussian to the NBA data?

Fitting Spherical Gaussians

Fitting Spherical Gaussians

Example: NBA Data

- Spherical Gaussians are not well-suited to this data.
- Perhaps if the data were standardized...
- Instead, try axis-aligned Gaussians.

Fitting Axis-Aligned Gaussians

- Variance for each axis: σ_{1}^{2} and σ_{2}^{2}.
- Maximum likelihood estimates:

$$
\begin{aligned}
& \sigma_{1}^{2}=\text { sample variance of heights } \\
& \sigma_{2}^{2}=\text { sample variance of weights }
\end{aligned}
$$

Fitting Axis-Aligned Gaussians

Fitting Axis-Aligned Gaussians

Example: NBA Data

- Axis-aligned Gaussian does not capture correlation between height and weight.
- Try general Gaussian with full covariance.

Fitting General Gaussians

- Must compute covariance for each pair of dimensions.
- Maximum likelihood estimate for covariance of feature i and j :

$$
C_{i j}=\left(\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}\right)-\mu_{i} \mu_{j}
$$

Computing the Covariance Matrix

Step 1. Make matrix with heights in first column, weights in second:
$\left(\begin{array}{cc}\text { height } 1 & \text { weight } 1 \\ \text { height } 2 & \text { weight } 2 \\ \cdots & \cdots \\ \text { height } n & \text { weight } n\end{array}\right)$

Computing the Covariance Matrix

Step 2. Subtract sample mean height, mean weight from each column. Call this matrix X :
$X=\left(\begin{array}{cc}\text { height } 1-\text { mean height } & \text { weight } 1-\text { mean weight } \\ \text { height } 2-\text { mean height } & \text { weight } 2-\text { mean weight } \\ \ldots & \ldots \\ \text { height } n-\text { mean height } & \text { weight } n-\text { mean weight }\end{array}\right)$

Computing the Covariance Matrix

The empirical covariance matrix is then:

$$
\begin{array}{r}
C=\frac{1}{n} X^{\top} X \\
C_{i j}=\left(\frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}\right)-\mu_{i} \mu_{j}
\end{array}
$$

Fitting General Gaussians

Fitting General Gaussians

Up next...

Making predictions using these fitted Gaussians.

$$
\text { DSC } 140 A
$$

Bayes Classifier with MV Gaussians

1. Fit Gaussian for $p(\vec{X} \mid Y=y)$ for each class, y.
2. For new point, predict y maximizing:

$$
p(\vec{X}=\vec{x} \mid Y=y) \mathbb{P}(Y=y)
$$

Decision Boundary

- For every point in space, we have a classification.
- The decision boundary: surface between different classifications.
\Rightarrow On one side, prediction is y_{1};
\Rightarrow on the other, prediction is y_{2}.

Setting \#1

Case

- Assume:
classes equally likely: $\mathbb{P}(Y=1)=\mathbb{P}(Y=0)$
- identical covariance matrices

Setting \#1

- If $\mathbb{P}\left(Y=y_{1}\right)>\mathbb{P}\left(Y=y_{2}\right)$:

Choose class 1 if $\vec{W} \cdot \frac{\left(\vec{\mu}_{1}-\vec{\mu}_{2}\right)}{\sigma^{2}} \geq \theta$.

Setting \#2

Case

- Assume:
- covariance matrices identical, diagonal
- that is: axis-aligned Gaussians

> Predict class 1 if $\vec{x} \cdot \vec{w} \geq \theta$.

Example

- Use to predict position given height and weight.
- How do we get one covariance matrix?
- Don't lump data together...
- Instead, compute covariance matrix for each class, perform weighted average:

$$
C=\frac{n_{1} C_{1}+n_{2} C_{2}}{n_{1}+n_{2}}
$$

Example

Example

Linear Discriminant Analysis

- When covariance matrices are equal, decision boundary is linear.
- This procedure is called linear discriminant analysis (LDA).
- True even if the Gaussians have full covariance.

Setting \#3

- Assume:
- covariance matrices C_{1}, C_{2} different, non-diagonal

Setting \#3

- Assume:
- covariance matrices C_{1}, C_{2} different, non-diagonal

Example

Example

Quadratic Discriminant Analysis

- When covariance matrices are/equal, decision boundary is quadratic (ellipsoidal, paraboloidal, hyperboloidal).
- This procedure is called quadratic discriminant analysis (QDA).

In practice...

- A full covariance requires estimating $\Theta\left(d^{2}\right)$ parameters; needs more data.
- Gaussian assumption may be a poor match for data.

