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Lecture 13 | Part 1

Bayes with Multiple Features



Recap

Bayes Classifier: predict y that maximizes
P(Y=y]|X =Xx)

Alternatively: predict y that maximizes
Px(x|Y = y)P(Y = y)

We must estimate these probabilities/densities.



Example: NBA Players

Guard and Forward are two positions in
basketball.

Forwards tend to be larger than guards.




Example: NBA Players

Suppose we have a data set of n NBA players:
X,: the player’s height
X,: the player’s weight
Y: the player’s position (1 = guard, 0 = forward)

Given: a new player’s height and weight, predict
their position.
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Bayes in > 2 Dimensions

With one feature, Bayes said to pick y maximizing:

py(X|Y = y)P(Y = y)

With k features, pick y maximizing:

ps(X|Y = y)P(Y = y)
X is the feature vector. Here: (height, weight)”

We need to estimate density p(X | Y = y) for each class.
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ing with Histograms
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Estimating with Histograms




Predicting with Histograms

To predict the class of an input X:

Use histograms to estimate py(X | Y = y) for each
class separately.

Predict the class y maximizing

py(X|Y =y)P(Y =y)



Histogram Estimators
Histogram density estimators are very flexible.
But suffer heavily from curse of dimensionality.

Not feasible for estimating density in more than
a few dimensions.



Today

Last time: we saw the parametric approach to

density estimation.
Pick a parametric distribution (e.g., Gaussian)
Find parameters by maximizing likelihood

We saw how to do this for one-dimensional data.

Today: multidimensional data.



In particular...
Today: multivariate Gaussian density estimation.

That is: fitting multivariate Gaussians to data
with maximum likelihood.
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Multivariate Gaussians



Multivariate Gaussians

In 1 dimension, a Gaussian seemed to describe
distribution of heights.

Does a multivariate Gaussian describe
distribution of heights and weights?



“Deriving” Multivariate Gaussians
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Setting #1

Suppose we have d independent random
variables Xj, ..., X;.

Assume that each is Gaussian; different mean,
but same variance:

X1~ N(Uq,0%), Xy ~N(Up 0%),.c, Xy~ N(Ug, 0°).



Setting #1

What is the joint density p(x;, X5, ..., X4)?

Since we assumed X,, ..., X, are independent:
‘uurl .ut;‘t
p(X’IrXZr "'er) = p(X1 )p(XZ)p(Xd)
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Setting #1

What is the joint density p(x;, X5, ..., X4)?

Since we assumed X,, ..., X, are independent:

p(X’I y X9y eeey Xd) = p(X‘] )p(XZ) p(Xd)
= (—1 e_%(x"”)z/“z) . (—1 e_%(x'“Z)Z/UZ)...(—1 e_%(x‘“d)zloz)
V2mo? V2mna? V2ma?
1 e (% = H)? + (X = o) + e+ (Xg = Hg)?
(21702)‘“2 P 202




X ¥z Setting #1
What is the joint density p(x;, X5, ..., X4)?

Since we assumed X,, ..., X, are independent:

P(Xq, Xy ey Xg) = P(X1)P(X3) = P(Xy)
=(;ez<xu1>z/o)_(; z(xuz)z,o).( 1 2(x,,d)z,a)
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Setting #1: Spherical Gaussians

p(x) = > o2

1 (_1||z—m|2)
(2mo2)d/2
Contours are (hyper)spheres.

Every slice through middle gives
same Gaussian.



Setting #2

Still assume X;, ..., Xy are independent, Gaussian.

But they now have different variances:

X1 ~ N(“‘IIO_’%)r X2 ~ N(HZrG%)r seey Xd ~ N(udra(zj)’



Setting #2

p(X1 ] Xz, ceey Xd) = p(X1 )p(XZ) cer p(Xd)
=(;e';(x'“ﬂz/"%).(;e'g(X—uz)zlé | g 30HaP o]
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Setting #2

Define

oz 0 0
c-|9 %0
0 0 0 o3
Then:
- 1 1 - - T _1 - -
p() - rexp (-5 (% - A)C(% - )
(2m)?/2|cl>

where |C] is the determinant of C.



Setting #2: Axis-Aligned Gaussians

R 1 10 gmtre o
p(x) = W exp (_f(x - g)yc(x - IJ))
Contours are axis-aligned (hy-
per)ellipses.

C is the covariance matrix. a2
Diagonal.
Entries are variances.



Setting #3: General Gaussians
We have assumed that X;, ..., X; are independent.

Now assume that they’re not. Define covariance:

w
Cov(X;, X;) = EL(X; - p)(X; - )] 1 -

.. T )
Note: 2 k H
Var(X;) = Cov(X;, X;)




Covariance

Covariance measures how much two quantities
vary together.
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Setting #3: General Gaussians

Now the covariance matrix has off-diagonal
elements:

Var(X;)  Cov(X;,X5) - Cov(Xq,X,)

Cov(Xy,X;) Cov(Xy,X5) - Var(Xy)

Since Cov(X;, X;) = Cov(X;, X;), C is symmetric.



Setting #3: General Gaussians

o 1 1,0 Ssi7e1/5 =
p(¥) = —exp (-5 -ACR- )

Contours are general (hyper)ellipses.
C need not be diagonal.



Overview

The probability density function for a
multivariate Gaussian distribution is:

1
(2myd2|c|?

p(%) = exp (-3(% - iYC (% - )

Here, C is the covariance matrix.



Overview
There are three cases:
C is diagonal, with all the same entries.
C is diagonal, with different entries.

C is not diagonal.
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Fitting Multivariate Gaussians



Fitting Multivariate Gaussians

Suppose XV,..., X" came from a multivariate
Gaussian.

What were the parameters of that Gaussian?

We can use the principle of maximum likelihood.



2

—_—
Cue

*  What are the parameters?

v

- 1 1,0 o1, -
p(%) = P (-5 -y c(x - )

fi: controls Gaussian’s location

C: controls Gaussian’s shape



Estimating [i

The maximum likelihood estimator for p is:

- 1 < >(7
Hwie = HZX(')

J/ i=1
\KA



Estimating C
First: make assumptions on covariance matrix.

In order from strict to weak:
Spherical: C is diagonal, with all the same entries.
Axis-Aligned: C is diagonal, with different entries.
General: Cis not diagonal.

The weaker the assumptions, the more
parameters to estimate.



Fitting Spherical Gaussians
Only one variance parameter: o2.

The density function becomes:

=BG -1)

The maximum likelihood estimator:

1 < (7 -
O = n Z 1D = fi 112
i=1
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Example

What if we fit a spherical Gaussian to the NBA

data?
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Fitting Spherical Gaussians
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Fitting Spherical Gaussians




Example: NBA Data

Spherical Gaussians are not well-suited to this
data.

Perhaps if the data were standardized...

Instead, try axis-aligned Gaussians.



Fitting Axis-Aligned Gaussians
Variance for each axis: 62 and o3.

Maximum likelihood estimates:

0? = sample variance of heights
03 = sample variance of weights



Fitting Axis-Aligned Gaussians
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Fitting Axis-Aligned Gaussians




Example: NBA Data

Axis-aligned Gaussian does not capture
correlation between height and weight.

Try general Gaussian with full covariance.



Fitting General Gaussians

Must compute covariance for each pair of
dimensions.

Maximum likelihood estimate for covariance of
feature i and J:

S|=

(Zk )u,-u,-



Computing the Covariance Matrix

Step 1. Make matrix with heights in first column,
weights in second:

height 1 weight 1
helght 2 Welght 2

helght n welght n



Computing the Covariance Matrix
Step 2. Subtract sample mean height, mean weight
from each column. Call this matrix X:

height 1- mean height weight 1- mean weight
X = height 2 - mean height weight 2 - mean weight

height n - mean height weight n - mean weight



Computing the Covariance Matrix

The empirical covariance matrix is then:

C = 1xTx
n

|5 2o
Cy (7 T 5 2m) il



Fitting General Gaussians
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Fitting General Gaussians




Up next...

Making predictions using these fitted Gaussians.
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Discriminant Analysis



Bayes Classifier with MV Gaussians

Fit Gaussian for p(X | Y = y) for each class, y.

For new point, predict y maximizing:

p(X =X|Y =y)P(Y =y)



Decision Boundary
For every point in space, we have a classification.

The decision boundary: surface between
different classifications.

On one side, prediction is y;

on the other, prediction is y,.



Setting #1
(art

Assume:
classes equally likely: P(Y = 1) = P(Y = 0)
identical covariance matrices

bisector of line
joining means




Setting #1

IFP(Y = ) > P(Y = y,)

-

Choose class 1if W - (“10;2”2) > 0.




Setting #2
Conn

Assume:
covariance matrices identical, diagonal
that is: axis-aligned Gaussians

Cv

Predict class 1 if
X-wz20.




Example

Use to predict position given height and weight.
How do we get one covariance matrix?
Don’t lump data together...

Instead, compute covariance matrix for each
class, perform weighted average:

) n,C; + n,C,
N, +n,

C



Example




Example
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Linear Discriminant Analysis

When covariance matrices are equal, decision
boundary is linear.

This procedure is called linear discriminant
analysis (LDA).

True even if the Gaussians have full covariance.



Setting #3

Assume:
covariance matrices C,, C, different, non-diagonal




Setting #3

Assume:
covariance matrices C,, C, different, non-diagonal




Example




Example
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Quadratic Discriminant Analysis

un
When covariance matrices are@qual, decision

boundary is quadratic (ellipsoidal, paraboloidal,
hyperboloidal).

This procedure is called quadratic discriminant
analysis (QDA).



In practice...

A full covariance requires estimating 0(d?)
parameters; needs more data.

Gaussian assumption may be a poor match for
data.



