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Bayes with Multiple Features



Recap

▶ Bayes Classifier: predict 𝑦 that maximizes
ℙ(𝑌 = 𝑦 | 𝑋 = 𝑥)

▶ Alternatively: predict 𝑦 that maximizes

𝑝𝑋(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)

▶ We must estimate these probabilities/densities.



Example: NBA Players

▶ Guard and Forward are two positions in
basketball.

▶ Forwards tend to be larger than guards.



Example: NBA Players

▶ Suppose we have a data set of 𝑛 NBA players:
▶ 𝑋1: the player’s height
▶ 𝑋2: the player’s weight
▶ 𝑌: the player’s position (1 = guard, 0 = forward)

▶ Given: a new player’s height and weight, predict
their position.
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Bayes in ≥ 2 Dimensions

▶ With one feature, Bayes said to pick 𝑦 maximizing:

𝑝𝑋(𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)

▶ With 𝑘 features, pick 𝑦 maximizing:

𝑝 ⃗𝑋( ⃗𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)

▶ ⃗𝑥 is the feature vector. Here: (height, weight)𝑇

▶ We need to estimate density 𝑝( ⃗𝑥 | 𝑌 = 𝑦) for each class.



Estimating with Histograms
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Estimating with Histograms
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Estimating with Histograms
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Predicting with Histograms

To predict the class of an input ⃗𝑥:

1. Use histograms to estimate 𝑝 ⃗𝑋( ⃗𝑥 | 𝑌 = 𝑦) for each
class separately.

2. Predict the class 𝑦 maximizing

𝑝 ⃗𝑋( ⃗𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)



Histogram Estimators

▶ Histogram density estimators are very flexible.

▶ But suffer heavily from curse of dimensionality.

▶ Not feasible for estimating density in more than
a few dimensions.



Today

▶ Last time: we saw the parametric approach to
density estimation.
▶ Pick a parametric distribution (e.g., Gaussian)
▶ Find parameters by maximizing likelihood

▶ We saw how to do this for one-dimensional data.

▶ Today: multidimensional data.



In particular...

▶ Today: multivariate Gaussian density estimation.

▶ That is: fitting multivariate Gaussians to data
with maximum likelihood.
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Multivariate Gaussians



Multivariate Gaussians

▶ In 1 dimension, a Gaussian seemed to describe
distribution of heights.

▶ Does a multivariate Gaussian describe
distribution of heights and weights?



“Deriving” Multivariate Gaussians

𝑋 ∼ N (𝜇, 𝜎2)

𝑝(𝑥) = 1
√2𝜋𝜎2

𝑒−
1
2 (𝑥−𝜇)

2/𝜎2



Setting #1

▶ Suppose we have 𝑑 independent random
variables 𝑋1, … , 𝑋𝑑.

▶ Assume that each is Gaussian; different mean,
but same variance:

𝑋1 ∼ N (𝜇1, 𝜎2), 𝑋2 ∼ N (𝜇2, 𝜎2), … , 𝑋𝑑 ∼ N (𝜇𝑑, 𝜎2).



Setting #1

▶ What is the joint density 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑)?

▶ Since we assumed 𝑋1, … , 𝑋𝑑 are independent:

𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)
= ( 1
√2𝜋𝜎2

𝑒−
1
2 (𝑥−𝜇1)

2/𝜎2) ⋅ ( 1
√2𝜋𝜎2

𝑒−
1
2 (𝑥−𝜇2)

2/𝜎2)⋯ ( 1
√2𝜋𝜎2

𝑒−
1
2 (𝑥−𝜇𝑑)

2/𝜎2)



Setting #1

▶ What is the joint density 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑)?

▶ Since we assumed 𝑋1, … , 𝑋𝑑 are independent:

𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)
= ( 1
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1
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2/𝜎2)⋯ ( 1
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1
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2/𝜎2)

= 1
(2𝜋𝜎2)𝑑/2

exp (−
(𝑥1 − 𝜇1)2 + (𝑥2 − 𝜇2)2 + … + (𝑥𝑑 − 𝜇𝑑)2

2𝜎2
)



Setting #1

▶ What is the joint density 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑)?

▶ Since we assumed 𝑋1, … , 𝑋𝑑 are independent:
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exp (−‖ ⃗𝑥 − �⃗�‖2

2𝜎2
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Setting #1



Setting #1: Spherical Gaussians

𝑝( ⃗𝑥) = 1
(2𝜋𝜎2)𝑑/2

exp (−12
‖ ⃗𝑥 − �⃗�‖2

𝜎2
)

▶ Contours are (hyper)spheres.
▶ Every slice through middle gives
same Gaussian.

�⃗�



Setting #2

▶ Still assume 𝑋1, … , 𝑋𝑑 are independent, Gaussian.

▶ But they now have different variances:

𝑋1 ∼ N (𝜇1, 𝜎21), 𝑋2 ∼ N (𝜇2, 𝜎22), … , 𝑋𝑑 ∼ N (𝜇𝑑, 𝜎2𝑑).



Setting #2

𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)
= ( 1
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Setting #2

𝑝(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝑝(𝑥1)𝑝(𝑥2) ⋯ 𝑝(𝑥𝑑)
= ( 1

√2𝜋𝜎21
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exp (−12 [
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(𝑥𝑑 − 𝜇𝑑)2

𝜎2𝑑
])



Setting #2

▶ Define

𝐶 = (

𝜎21 0 ⋯ 0
0 𝜎22 ⋯ 0
⋯ ⋯ ⋯ ⋯
0 0 0 𝜎2𝑑

)

▶ Then:

𝑝( ⃗𝑥) = 1

(2𝜋)𝑑/2|𝐶|
1
2
exp (−12( ⃗𝑥 − �⃗�)𝑇𝐶−1( ⃗𝑥 − �⃗�))

where |𝐶| is the determinant of 𝐶.



Setting #2: Axis-Aligned Gaussians

𝑝( ⃗𝑥) = 1
(2𝜋)𝑑/2|𝐶|

1
2
exp (−12( ⃗𝑥 − �⃗�)

𝑇𝐶−1( ⃗𝑥 − �⃗�))

▶ Contours are axis-aligned (hy-
per)ellipses.

▶ 𝐶 is the covariance matrix.
▶ Diagonal.
▶ Entries are variances.

�⃗�



Setting #3: General Gaussians

▶ We have assumed that 𝑋1, … , 𝑋𝑑 are independent.

▶ Now assume that they’re not. Define covariance:

Cov(𝑋𝑖, 𝑋𝑗) = 𝔼[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)]

▶ Note:
Var(Xi) = Cov(𝑋𝑖, 𝑋𝑖)



Covariance
▶ Covariance measures how much two quantities
vary together.
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Cov(𝑋𝑖, 𝑋𝑗) = 𝔼[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)]



Setting #3: General Gaussians

▶ Now the covariance matrix has off-diagonal
elements:

𝐶 = (

Var(𝑋1) Cov(𝑋1, 𝑋2) ⋯ Cov(𝑋1, 𝑋𝑑)
Cov(𝑋2, 𝑋1) Var(𝑋2) ⋯ Cov(𝑋2, 𝑋𝑑)

⋯ ⋯ ⋯ ⋯
Cov(𝑋𝑑, 𝑋1) Cov(𝑋𝑑, 𝑋2) ⋯ Var(𝑋𝑑)

)

▶ Since Cov(𝑋𝑖, 𝑋𝑗) = Cov(𝑋𝑗, 𝑋𝑖), 𝐶 is symmetric.



Setting #3: General Gaussians

𝑝( ⃗𝑥) = 1
(2𝜋)𝑑/2|𝐶|

1
2
exp (−12( ⃗𝑥 − �⃗�)

𝑇𝐶−1( ⃗𝑥 − �⃗�))

Contours are general (hyper)ellipses.
𝐶 need not be diagonal.

�⃗�



Overview

▶ The probability density function for a
multivariate Gaussian distribution is:

𝑝( ⃗𝑥) = 1

(2𝜋)𝑑/2|𝐶|
1
2
exp (−12( ⃗𝑥 − �⃗�)𝑇𝐶−1( ⃗𝑥 − �⃗�))

▶ Here, 𝐶 is the covariance matrix.



Overview

▶ There are three cases:

1. 𝐶 is diagonal, with all the same entries.

2. 𝐶 is diagonal, with different entries.

3. 𝐶 is not diagonal.
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Fitting Multivariate Gaussians

▶ Suppose ⃗𝑥(1), … , ⃗𝑥(𝑛) came from a multivariate
Gaussian.

▶ What were the parameters of that Gaussian?

▶ We can use the principle of maximum likelihood.



What are the parameters?

𝑝( ⃗𝑥) = 1
(2𝜋)𝑑/2|𝐶|

1
2
exp (−12( ⃗𝑥 − �⃗�)𝑇𝐶−1( ⃗𝑥 − �⃗�))

▶ �⃗�: controls Gaussian’s location

▶ 𝐶: controls Gaussian’s shape



Estimating �⃗�

▶ The maximum likelihood estimator for 𝜇 is:

�⃗�MLE = 1
𝑛

𝑛

∑
𝑖=1

⃗𝑥(𝑖)



Estimating 𝐶

▶ First: make assumptions on covariance matrix.

▶ In order from strict to weak:
▶ Spherical: 𝐶 is diagonal, with all the same entries.
▶ Axis-Aligned: 𝐶 is diagonal, with different entries.
▶ General: 𝐶 is not diagonal.

▶ The weaker the assumptions, the more
parameters to estimate.



Fitting Spherical Gaussians

▶ Only one variance parameter: 𝜎2.

▶ The density function becomes:

𝑝( ⃗𝑥) = 1
(2𝜋𝜎2)𝑑/2

exp (−( ⃗𝑥 − �⃗�)𝑇( ⃗𝑥 − �⃗�)
2𝜎2

)

▶ The maximum likelihood estimator:

𝜎2MLE = 1
𝑛

𝑛

∑
𝑖=1

‖ ⃗𝑥(𝑖) − �⃗�MLE‖2



Example: NBA Data
▶ What if we fit a spherical Gaussian to the NBA
data?
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Fitting Spherical Gaussians



Fitting Spherical Gaussians



Example: NBA Data

▶ Spherical Gaussians are not well-suited to this
data.

▶ Perhaps if the data were standardized...

▶ Instead, try axis-aligned Gaussians.



Fitting Axis-Aligned Gaussians

▶ Variance for each axis: 𝜎21 and 𝜎22 .

▶ Maximum likelihood estimates:

𝜎21 = sample variance of heights
𝜎22 = sample variance of weights



Fitting Axis-Aligned Gaussians



Fitting Axis-Aligned Gaussians



Example: NBA Data

▶ Axis-aligned Gaussian does not capture
correlation between height and weight.

▶ Try general Gaussian with full covariance.



Fitting General Gaussians

▶ Must compute covariance for each pair of
dimensions.

▶ Maximum likelihood estimate for covariance of
feature 𝑖 and 𝑗:

C𝑖𝑗 = (1𝑛

𝑛

∑
𝑘=1

⃗𝑥(𝑘)𝑖 ⃗𝑥(𝑘)𝑗 ) − 𝜇𝑖𝜇𝑗



Computing the Covariance Matrix

Step 1. Make matrix with heights in first column,
weights in second:

(

height 1 weight 1
height 2 weight 2

⋯ ⋯
height 𝑛 weight 𝑛

)



Computing the Covariance Matrix

Step 2. Subtract sample mean height, mean weight
from each column. Call this matrix 𝑋:

𝑋 = (

height 1 −mean height weight 1 −mean weight
height 2 −mean height weight 2 −mean weight

⋯ ⋯
height 𝑛 −mean height weight 𝑛 −mean weight

)



Computing the Covariance Matrix

The empirical covariance matrix is then:

𝐶 = 1
𝑛𝑋

𝑇𝑋



Fitting General Gaussians



Fitting General Gaussians



Up next...

Making predictions using these fitted Gaussians.
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Bayes Classifier with MV Gaussians

1. Fit Gaussian for 𝑝( ⃗𝑋 | 𝑌 = 𝑦) for each class, 𝑦.

2. For new point, predict 𝑦 maximizing:

𝑝( ⃗𝑋 = ⃗𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)



Decision Boundary

▶ For every point in space, we have a classification.

▶ The decision boundary: surface between
different classifications.
▶ On one side, prediction is 𝑦1;
▶ on the other, prediction is 𝑦2.



Setting #1

▶ Assume:
▶ classes equally likely: ℙ(𝑌 = 1) = ℙ(𝑌 = 0)
▶ identical covariance matrices



Setting #1

▶ If ℙ(𝑌 = 𝑦1) > ℙ(𝑌 = 𝑦2):

Choose class 1 if �⃗� ⋅ (�⃗�1−�⃗�2)𝜎2 ≥ 𝜃.



Setting #2

▶ Assume:
▶ covariance matrices identical, diagonal
▶ that is: axis-aligned Gaussians

Predict class 1 if
⃗𝑥 ⋅ �⃗� ≥ 𝜃.



Example
▶ Use to predict position given height and weight.

▶ How do we get one covariance matrix?

▶ Don’t lump data together...

▶ Instead, compute covariance matrix for each
class, perform weighted average:

𝐶 =
𝑛1𝐶1 + 𝑛2𝐶2

𝑛1 + 𝑛2



Example



Example



Linear Discriminant Analysis

▶ When covariance matrices are equal, decision
boundary is linear.

▶ This procedure is called linear discriminant
analysis (LDA).

▶ True even if the Gaussians have full covariance.



Setting #3

▶ Assume:
▶ covariance matrices 𝐶1, 𝐶2 different, non-diagonal



Setting #3

▶ Assume:
▶ covariance matrices 𝐶1, 𝐶2 different, non-diagonal



Example



Example



Quadratic Discriminant Analysis

▶ When covariance matrices are equal, decision
boundary is quadratic (ellipsoidal, paraboloidal,
hyperboloidal).

▶ This procedure is called quadratic discriminant
analysis (QDA).



In practice...

▶ A full covariance requires estimating Θ(𝑑2)
parameters; needs more data.

▶ Gaussian assumption may be a poor match for
data.


