$$
\text { DSC } 140 A
$$

## Applying the Bayes Classifier

- Predict the class $y$ which maximizes:

$$
p_{X}(\vec{X}=\vec{x} \mid Y=y) \mathbb{P}(Y=y)
$$

- We must estimate the density, $p_{x}$.
- Two approaches:

1. Non-parametric (e.g., histograms)
2. Parametric (e.g., fit Gaussian with MLE)

## Curse of Dimensionality

- In practice, we have many features.
- This means $p_{X}(\vec{X}=\vec{x} \mid Y=y)$ is high dimensional.
- Non-parametric estimators do not do well in high dimensions due to the curse of dimensionality:
- Data required grows exponentially with number of features.


## Responses

- Parametric density estimation can fare better.
- However, it too can suffer from the curse.
- Today, a different approach: assume conditional independence.

$$
\text { DSC } 140 \mathrm{~A}
$$

## Remember: Independence

$\Rightarrow$ Events $A$ and $B$ are independent if

$$
\mathbb{P}(A, B)=\mathbb{P}(A) \cdot \mathbb{P}(B) .
$$

$\Rightarrow$ Equivalently, $A$ and $B$ are independent if ${ }^{1}$

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

```
1'or }\mathbb{P}(B)=
```


## Informally

$\Rightarrow A$ and $B$ are independent if learning $B$ does not influence your belief that $A$ happens.

$$
\begin{aligned}
& P(A)=1 / 4 \\
& \text { Example } \\
& P(A, B)=4 / 52 \\
& P(A)=\frac{1}{4} \quad P(B)=\frac{16}{52}
\end{aligned}
$$

You draw one card from a deck of 52 cards. $A$ is the event that the card is a heart, $B$ is the event that the card is a face card ( $(,, \mathrm{Q}, \mathrm{K}, \mathrm{A})$. Are these independent? Yes
v: $2,3,4,5,6,7,8,9,10, J, Q, K, A$
-: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
£: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
ء: $2,3,4,5,6,7,8,9,10, J, Q, K, A$

$$
P(A, B)=4 / 51 \quad \text { Example } \quad \frac{4}{51} ? \frac{13}{51} \cdot \frac{15}{51}
$$

$$
P(A)=\frac{13}{51} \quad P(B)=15 / 51
$$

We've lost the King of Clubs! You draw one card from this deck of 51 cards. $A$ is the event that the card is a heart, $B$ is the event that the card is a face card (J,Q,K,A). Are these independent? No

$$
\begin{aligned}
& P(B)=15 / 51 \\
& \begin{aligned}
P(B \mid A)=4 / 13 & : 2,3,4,5,6,7,8,9,10, J, Q, K, A \\
& : 2,3,4,5,6,7,8,9,10, J, Q, K, A \\
& \vdots 2,3,4,5,6,7,8,9,10, J, Q \\
& \\
& : 2,3,4,5,6,7,8,9,10, J, Q, K, A
\end{aligned}
\end{aligned}
$$

## In the Real World...

...true independence is rare.

- Example, survivors of the titanic:

|  | Survived | Pclass | Sex | Age | Fare | Embarked | FavColor |
| :--- | ---: | ---: | :--- | :--- | ---: | :--- | :--- | :--- |
| PassengerID |  |  |  |  |  |  |  |
| 0 | 0 | 3 | female | 23.0 | 7.9250 | S | yellow |
| 1 | 0 | 1 | male | 47.0 | 52.0000 | S | purple |
| 2 | 0 | 3 | male | 36.0 | 7.4958 | S | green |
| 3 | 0 | 3 | male | 31.0 | 7.7500 | Q | purple |
| 4 | 0 | 3 | male | 19.0 | 7.8958 | S | purple |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |

## In the Real World...

- $\mathbb{P}($ Survived $=1)=.408$
- $\mathbb{P}($ Survived $=1 \mid$ FavColor $=$ purple $)=.4$
- Not independent...


## In the Real World...

$\triangleright \mathbb{P}($ Survived $=1)=.408$

- $\mathbb{P}($ Survived $=1 \mid$ FavColor $=$ purple $)=.4$
- Not independent... ...but "close"!


## In the Real World...

$\mathbb{P}($ Survived $=1)=.408$
$\mathbb{P}($ Survived $=1 \mid$ Pclass $=1)=$

## In the Real World...

$\mathbb{P}($ Survived $=1)=.408$
$\mathbb{P}($ Survived $=1 \mid$ Pclass $=1)=.657$

## In the Real World...

- $\mathbb{P}($ Survived $=1)=.408$
- $\mathbb{P}($ Survived $=1 \mid$ Pclass $=1)=.657$
- Strong dependence.


## Remember: Conditional Independence

$\Rightarrow$ Events $A$ and $B$ are conditionally independent given $C$ if

$$
\mathbb{P}(A, B \mid C)=\mathbb{P}(A \mid C) \cdot \mathbb{P}(B \mid C)
$$

- Equivalently ${ }^{2}$ :

$$
\mathbb{P}(A \mid B, C)=\mathbb{P}(A \mid C)
$$

${ }^{2} \operatorname{Or} \mathbb{P}(B)=0$

## Informally

- Suppose you know that $C$ has happened.
- You have some belief that $A$ happens, given $C$.
- $A$ and $B$ are conditionally independent given $C$ if learning that $B$ happens in addition to $C$ does not influence your belief that $A$ happens given $C$.


## Very informally

- $A$ and $B$ are conditionally independent given $C$ if learning that $B$ happens in addition to $C$ gives you no more information about $A$.
$P(A, B \mid C)=P(A \mid C) \cdot P(B \mid C)$

$$
P(A \mid B, C)=P(A \mid C)
$$

We've lost the King of Clubs! You draw one card from this deck of 51 cards. $A$ is the event that the card is a heart, $B$ is the event that the card is a face card ( J, Q, K, A). Now suppose you know that the card is red. Are $A$ and $B$ independent given this information?

$$
\begin{aligned}
& \text { v: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A } \\
& \text { - : 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A } \\
& \text { ㄴ: } 2,3,4,5,6,7,8,9,10, J, Q, \quad A \\
& \text { ゅ: } 2,3,4,5,6,7,8,9,10, J, Q, K, A
\end{aligned}
$$

## Titanic Example

- Survival and class are not independent.
$\Rightarrow \mathbb{P}($ Survived $=1)=.408$
$\Rightarrow \mathbb{P}($ Survived $=1 \mid$ Pclass $=1)=.657$
- But they're (close) to conditionally independent given ticket price:
$\rightarrow \mathbb{P}($ Survived $=1 \mid$ PClass $=1$, Fare $>50)=.708$
$\Rightarrow \mathbb{P}($ Survived $=1 \mid$ Fare $>50)=.696$


## More Variables

- $X_{1}, X_{2}, \ldots, X_{d}$ are mutually conditionally independent given $Y$ if

$$
\mathbb{P}\left(X_{1}, X_{2}, \ldots, X_{d} \mid Y\right)=\mathbb{P}\left(X_{1} \mid Y\right) \cdot \mathbb{P}\left(X_{2} \mid Y\right) \cdots \mathbb{P}\left(X_{d} \mid Y\right)
$$

## Densities <br> 

- If $A$ and $B$ are continuous random variables, their joint density can be factored:

$$
p(a, b)=p_{A}(a) \cdot p_{B}(b)
$$

- If $A$ and $B$ are conditionally independent given $C$, then:

$$
p(a, b \mid C=c)=p_{A}(a \mid C=c) \cdot p_{B}(b \mid C=c)
$$

## Densities

- Suppose $X_{1}, \ldots, X_{d}$ are $d$ features, $Y$ is class label.
- If the features are not independent given $Y$, then:

$$
p(\vec{x} \mid Y=y)=p\left(x_{1}, x_{2}, \ldots, x_{d} \mid Y=y\right)
$$

- Curse of dimensionality!


## Densities

- Suppose $X_{1}, \ldots, X_{d}$ are $d$ features, $Y$ is class label.
- However, if the features are mutually conditionally independent given $Y$, then:

$$
\begin{aligned}
p(\vec{x} \mid Y=y) & =p\left(x_{1}, x_{2}, \ldots, x_{d} \mid Y=y\right) \\
& =p_{1}\left(x_{1} \mid Y=y\right) \cdot p_{2}\left(x_{2} \mid Y=y\right) \cdots p_{d}\left(x_{d} \mid Y=y\right)
\end{aligned}
$$

## Exercise

## Are $X_{1}$ and $X_{2}$ (close to) conditionally independent given $Y$ ?



Exercise
Are height and weight (close to) conditionally independent given the player's position?

No


Probatilistic Modeling $\&$ Machine Learning
Lecture 01 | Part 3
How Conditional Independence Helps

## Recall: The Bayes Classifier

- To use the Bayes classifier, we must estimate

$$
p\left(\vec{x} \mid Y=y_{i}\right)
$$

for each class $y_{i}$, where $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$.

- Written differently, we need to estimate:

$$
p\left(x_{1}, \ldots, x_{d} \mid Y=y_{i}\right)
$$

## Recall: Histogram Estimators

- When $X_{1}, \ldots, X_{d}$ are continuous, we can use histogram estimators.
- Curse of Dimensionality: if we discretize each dimension into 10 bins, there are $10^{d}$ bins.


## Conditional Independence to the Rescue

- Now suppose $X_{1}, \ldots, X_{d}$ are mutually conditionally independent given $Y$. Then:

$$
p\left(x_{1}, \ldots, x_{d} \mid Y=y_{i}\right)=p_{1}\left(x_{1} \mid Y=y_{i}\right) p_{2}\left(x_{2} \mid Y=y_{i}\right) \cdots p_{d}\left(x_{d} \mid Y=y_{i}\right)
$$

$\Rightarrow$ Instead of estimating $p\left(x_{1}, \ldots, x_{d} \mid Y\right)$, estimate $p_{1}\left(x_{1} \mid Y\right), \ldots, p_{d}\left(x_{d} \mid Y\right)$ separately.

## Breaking the Curse

- Suppose we use histogram estimators.
- If we discretize each dimension into 10 bins, we need:
-10 bins to estimate $p_{1}\left(x_{1} \mid Y\right)$
- 10 bins to estimate $p_{2}\left(x_{2} \mid Y\right)$
- 10 bins to estimate $p_{d}\left(x_{d} \mid Y\right)$
- We therefore need $10 d$ bins in total.


## Breaking the Curse

- Conditional independence drastically reduced the number of bins needed to cover the input space.
- From $\Theta\left(10^{d}\right)$ to $\Theta(d)$.


## Idea

- Bayes Classifier needs a lot of data when $d$ is big.
- But if the features are conditionally independent given the label, we don't need so much data.
- So let's just assume conditional independence.
- The result: the Naïve Bayes Classifier.


## Naïve Bayes: The Algorithm

- Assume that $X_{1}, \ldots, X_{d}$ are mutually independent given the class label.
- Estimate one-dimensional densities
$p_{1}\left(x_{1} \mid Y=y_{i}\right), \ldots, p_{d}\left(x_{d} \mid Y=y_{i}\right)$ however you'd like.
> histograms, fitting univariate Gaussians, etc.
- Pick the $y_{i}$ which maximizes

$$
p_{1}\left(x_{1} \mid Y=y_{i}\right) \cdots p_{2}\left(x_{d} \mid Y=y_{i}\right) \mathbb{P}\left(Y=y_{i}\right)
$$

## But wait...

- ...are we allowed to just assume conditional independence?
- Sure!
> The independence assumption is usually wrong, but it can work surprisingly well in practice.
- You can estimate $p\left(X_{i} \mid Y\right)$ however makes sense.
- Popular: Gaussian Naïve Bayes.


## Example: NBA

- Given: player with height $=75$ in, weight $=210 \mathrm{lbs}$.
- Predict: whether they are a forward or a guard.
- Let's use Gaussian Naïve Bayes.


## Example: NBA

- Compute:

$$
\begin{gathered}
p(75 \mathrm{in}, 210 \mathrm{lbs} \mid Y=\text { forward }) \mathbb{P}(Y=\text { forward }) \\
p(75 \mathrm{in}, 210 \mathrm{lbs} \mid Y=\text { guard }) \mathbb{P}(Y=\text { guard })
\end{gathered}
$$

- Using conditional independence assumption:

$$
\begin{gathered}
p_{1}(75 \text { in } \mid Y=\text { forward }) \cdot p_{2}(210 \mathrm{lbs} \mid Y=\text { forward }) \mathbb{P}(Y=\text { forward }) \\
p_{1}(75 \mathrm{in} \mid Y=\text { guard }) \cdot p_{2}(210 \mathrm{lbs} \mid Y=\text { guard }) \mathbb{P}(Y=\text { guard })
\end{gathered}
$$

## Example: NBA

- We need to estimate:
$p_{1}(75$ in $\mid Y=$ forward $)$
$p_{1}(75$ in $\mid Y=$ guard $)$
$p_{2}(210 \mathrm{lbs} \mid Y=$ forward $)$
$p_{2}(210 \mathrm{lbs} \mid Y=$ guard $)$


## Example: NBA

- We'll fit 1-d Gaussians to:
- heights of forwards.
- heights of guards.
- weights of forwards.
weights of guards.


Heights of Guards: $\mu=75.44, \sigma=2.27$




## Example: NBA

$$
\begin{aligned}
& \begin{array}{l}
p_{1}(75 \mid Y=\text { forward }) \cdot p_{2}(210 \mid Y=\text { forward }) \cdot \mathbb{P}(Y=\text { forward }) \\
\quad=\mathcal{N}\left(75 ; 80.58,1.53^{2}\right) \cdot \mathcal{N}\left(210 ; 230.46,17.48^{2}\right) \cdot \frac{156}{300} \\
\\
\approx 6.73 \times 10^{-6}
\end{array} \\
& \begin{aligned}
& p_{1}(75 \mid Y=\text { guard }) \cdot p_{2}(210 \mid Y=\text { guard }) \cdot \mathbb{P}(Y=\text { guard }) \\
&=\mathcal{N}\left(75 ; 75.44,2.27^{2}\right) \cdot \mathcal{N}\left(210 ; 195.47,15.83^{2}\right) \cdot \frac{144}{300} \\
& \approx 5.88 \times 10^{-5}
\end{aligned}
\end{aligned}
$$

## Example: NBA

About 85\% accurate on test set.

## Exercise

## Are height and weight conditionally independent given the player's position? No



## Example: NBA

- No!
- Gaussian Naïve Bayes worked well even though the conditional independence assumption is not accurate.


## Gaussian Naïve Bayes

> $p\left(X_{1} \mid Y\right) \cdots p\left(X_{d} \mid Y\right)$ is a product of 1-d Gaussians with different means, variances.

- Remember: result is a d-dimensional Gaussian with diagonal covariance matrix:

$$
C=\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \sigma_{d}^{2}
\end{array}\right)
$$

## Gaussian Naïve Bayes

- But in GNB, each class has own diagonal covariance matrix.
- Therefore: Gaussian Naïve Bayes is equivalent to QDA with diagonal covariances.


## Beyond Gaussian

- Naïve Bayes is very flexible.
- Can use different parametric distributions for different features.
- E.g., normal for feature 1, log normal for feature 2, etc.
- Can use non-parametric density estimation (densities) for other features.
- Can also handle discrete features.


## Up next...

...predicting who survives on the Titanic.

$$
D S C 140 A
$$

## The Titanic Dataset

|  | Survived | Pclass | Sex | Age | Fare | Embarked | FavColor |
| :--- | ---: | ---: | :--- | ---: | ---: | ---: | :--- |
| PassengerID |  |  |  |  |  |  |  |
| 0 | 0 | 3 | female | 23.0 | 7.9250 | S | yellow |
| 1 | 0 | 1 | male | 47.0 | 52.0000 | S | purple |
| 2 | 0 | 3 | male | 36.0 | 7.4958 | S | green |
| 3 | 0 | 3 | male | 31.0 | 7.7500 | Q | purple |
| 4 | 0 | 3 | male | 19.0 | 7.8958 | S | purple |
| $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |

Goal: predict survival given Age, Sex, Pclass.

## Let's use Naïve Bayes

- We'll pick $y_{i}$ so as to maximize

$$
p\left(\text { Age }=x_{1} \mid Y=y_{i}\right) \cdot \mathbb{P}\left(\text { Sex }=x_{2} \mid Y=y_{i}\right) \cdot \mathbb{P}\left(\text { Pclass }=x_{3} \mid Y=y_{i}\right) \cdot \mathbb{P}\left(Y=y_{i}\right)
$$

- We must choose how to estimate probabilities. Gaussians?


## Estimating Probabilities

- How do we estimate $p\left(\right.$ Age $\left.=x_{1} \mid Y=y_{i}\right)$ ?
- Age is a continuous variable.
- Looks kind of bell-shaped, we'll fit Gaussians.



## Estimating Probabilities

- How do we estimate $\mathbb{P}\left(\operatorname{Sex}=x_{1} \mid Y=y_{i}\right)$ ?
- Sex is a discrete variable in this data set.
- Fitting Gaussian makes no sense.
- But estimating these probabilities is easy.


## Estimating Probabilities

$$
\begin{aligned}
\mathbb{P}(\text { Sex }=\text { male } \mid \text { Survived }) & \approx \frac{\# \text { of survived and male }}{\# \text { of survived }} \\
& =.4
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}(\text { Sex }=\text { male } \mid \text { Did Not Survive }) & \approx \frac{\# \text { of died and male }}{\# \text { of died }} \\
& =.87
\end{aligned}
$$

## Estimating Probabilities

- Pclass, too, is categorical. Estimate in same way.
- You can estimate $\mathbb{P}\left(X_{i} \mid Y\right)$ however makes sense.
- Can use different ways for different features.
- Gaussian for age, simple ratio of counts for class, sex.


## Example: The Titanic

- Using just age, sex, ticket class, Naïve Bayes is $70 \%$ accurate on test set.
- Not bad. Not great.
- To do better, add more features.


## In High Dimensions

- Naïve Bayes can work well in high dimensions.
- Example: document classification.
- Document represented by a "bag of words".
- Pick a large number of words; say, 20,000.
- Make a d-dimensional vector with ith entry counting number of occurrences of ith word.


## Practical Issues

- We are multiplying lots of small probabilities:

$$
\mathbb{P}\left(X_{1} \mid Y\right) \cdots \mathbb{P}\left(X_{d} \mid Y\right)
$$

- Potential for underflow.


## Practical Issues

## "Trick": work with log-probabilities instead.

- Pick the $y_{i}$ which maximizes

$$
\begin{aligned}
\log & {\left[\mathbb{P}\left(X_{1}=x_{1} \mid Y=y_{i}\right) \cdots \mathbb{P}\left(X_{d}=x_{d} \mid Y=y_{i}\right) \mathbb{P}\left(Y=y_{i}\right)\right] } \\
& =\log \mathbb{P}\left(X_{1}=x_{1} \mid Y=y_{i}\right)+\ldots+\log \mathbb{P}\left(X_{d}=x_{d} \mid Y=y_{i}\right)+\log \mathbb{P}\left(Y=y_{i}\right) \\
& =\left(\sum_{j=1}^{d} \log \mathbb{P}\left(X_{j}=x_{j} \mid Y=y_{i}\right)\right)+\log \mathbb{P}\left(Y=y_{i}\right)
\end{aligned}
$$

