

Lecture 01 | Part 1

Recap

Applying the Bayes Classifier

Predict the class y which maximizes:

$$p_X(\vec{X}=\vec{x}\mid Y=y)\mathbb{P}(Y=y)$$

• We must **estimate** the density, p_{χ} .

► Two approaches:

- 1. Non-parametric (e.g., histograms)
- 2. Parametric (e.g., fit Gaussian with MLE)

Curse of Dimensionality

- In practice, we have many features.
- This means $p_X(\vec{X} = \vec{x} | Y = y)$ is **high dimensional**.
- Non-parametric estimators do not do well in high dimensions due to the curse of dimensionality:
 - Data required grows exponentially with number of features.

Responses

- Parametric density estimation can fare better.
- However, it too can suffer from the curse.
- Today, a different approach: assume conditional independence.

Lecture 01 | Part 2

What is Conditional Independence?

Remember: Independence

Events A and B are independent if

 $\mathbb{P}(A,B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$

Equivalently, A and B are independent if¹

 $\mathbb{P}(A \mid B) = \mathbb{P}(A)$

¹or P(B) = 0

Informally

A and B are independent if learning B does not influence your belief that A happens.

Example $P(A,B) = \frac{4}{52}$ $P(A) = \frac{1}{4} P(B) = \frac{16}{52}$

P(A) = 1/4P(A|B) = 1/4

You draw one card from a deck of 52 cards. A is the event that the card is a heart, *B* is the event that the card is a face card (J,Q,K,A). Are these independent?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
±: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
±: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

 $P(A,B) = \frac{4}{51}$ Example $P(A) = \frac{13}{51}$ $P(B) = \frac{15}{51}$ We've lost the King of Clubs! You draw one card from this deck of 51 cards. A is the event that the card is a heart. B is the event that the card is a face card (J,Q,K,A). Are these independent? M_{0} $P(B) = \frac{15}{51}$ $P(B|A) = \frac{4}{13}$ ♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A ♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J. Q. K. A **≜**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A ♠: 2. 3. 4. 5. 6. 7. 8. 9. 10. J. O. K. A

...true independence is rare.

Example, survivors of the titanic:

PassengerID	Survived	Pclass	Sex	Age	Fare	Embarked	FavColor
0 1 2 3 4	0 0 0 0 0	3 1 3 3 3	female male male male male	23.0 47.0 36.0 31.0 19.0	7.9250 52.0000 7.4958 7.7500 7.8958	S S S Q S	yellow purple green purple purple

- ▶ P(Survived = 1) = .408
- P(Survived = 1 | FavColor = purple) = .4
- Not independent...

- P(Survived = 1) = .408
- P(Survived = 1 | FavColor = purple) = .4
- Not independent... ...but "close"!

•
$$\mathbb{P}(\text{Survived} = 1 | \text{Pclass} = 1) =$$

- ▶ P(Survived = 1) = .408
- ▶ P(Survived = 1 | Pclass = 1) = .657
- Strong dependence.

Remember: Conditional Independence

Events A and B are conditionally independent given C if

$$\mathbb{P}(A, B \mid C) = \mathbb{P}(A \mid C) \cdot \mathbb{P}(B \mid C)$$

Equivalently²:

$$\mathbb{P}(A \mid B, C) = \mathbb{P}(A \mid C)$$

²Or
$$\mathbb{P}(B) = 0$$

Informally

- Suppose you know that C has happened.
- You have some belief that A happens, given C.
- A and B are conditionally independent given C if learning that B happens in addition to C does not influence your belief that A happens given C.

Very informally

A and B are conditionally independent given C if learning that B happens in addition to C gives you no more information about A.

$P(A,B|C) = P(A|C) \cdot P(B|C)$ Example P(A|B,C) = P(A|C)

We've lost the King of Clubs! You draw one card from this deck of 51 cards. A is the event that the card is a heart, B is the event that the card is a face card (J,Q,K,A). Now suppose you know that the card is red. Are A and B independent **given** this information?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A
♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Titanic Example

- Survival and class are **not** independent.
 - ▶ P(Survived = 1) = .408
 - P(Survived = 1 | Pclass = 1) = .657
- But they're (close) to conditionally independent given ticket price:
 - P(Survived = 1 | PClass = 1, Fare > 50) = .708
 - P(Survived = 1 | Fare > 50) = .696

More Variables

X₁, X₂, ..., X_d are mutually conditionally independent given Y if

 $\mathbb{P}(X_1, X_2, \dots, X_d \mid Y) = \mathbb{P}(X_1 \mid Y) \cdot \mathbb{P}(X_2 \mid Y) \cdots \mathbb{P}(X_d \mid Y)$

▶ If A and B are **continuous** random variables, their joint density can be factored:

$$p(a,b) = p_A(a) \cdot p_B(b)$$

If A and B are conditionally independent given C. then:

$$p(a, b | C = c) = p_A(a | C = c) \cdot p_B(b | C = c)$$

Densities

- ► Suppose *X*₁,...,*X*_d are *d* features, *Y* is class label.
- If the features are not independent given Y, then:

$$p(\vec{x} | Y = y) = p(x_1, x_2, ..., x_d | Y = y)$$

Curse of dimensionality!

Densities

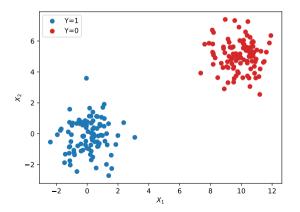
- ▶ Suppose *X*₁,...,*X*_d are *d* features, *Y* is class label.
- However, if the features are mutually conditionally independent given Y, then:

$$p(\vec{x} \mid Y = y) = p(x_1, x_2, ..., x_d \mid Y = y)$$

= $p_1(x_1 \mid Y = y) \cdot p_2(x_2 \mid Y = y) \cdots p_d(x_d \mid Y = y)$

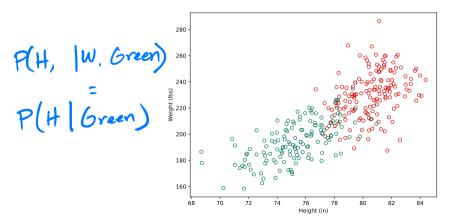
Exercise

Are X_1 and X_2 (close to) conditionally independent given Y?



Exercise

Are height and weight (close to) conditionally independent given the player's position? N_{e}



Lecture 01 | Part 3

How Conditional Independence Helps

Recall: The Bayes Classifier

To use the Bayes classifier, we must estimate

 $p(\vec{x} \mid Y = y_i)$

for each class y_i , where $\vec{x} = (x_1, x_2, \dots, x_d)$.

Written differently, we need to estimate:

 $p(x_1, \dots, x_d \mid Y = y_i)$

Recall: Histogram Estimators

When X₁,...,X_d are continuous, we can use histogram estimators.

Curse of Dimensionality: if we discretize each dimension into 10 bins, there are 10^d bins.

Conditional Independence to the Rescue

Now suppose X₁,..., X_d are mutually conditionally independent given Y. Then:

$$p(x_1, \dots, x_d \mid Y = y_i) = p_1(x_1 \mid Y = y_i)p_2(x_2 \mid Y = y_i) \cdots p_d(x_d \mid Y = y_i)$$

▶ Instead of estimating $p(x_1, ..., x_d | Y)$, estimate $p_1(x_1 | Y), ..., p_d(x_d | Y)$ separately.

Breaking the Curse

- Suppose we use histogram estimators.
- If we discretize each dimension into 10 bins, we need:
 - ▶ 10 bins to estimate $p_1(x_1|Y)$
 - ▶ 10 bins to estimate $p_2(x_2|Y)$
 - •••
 - ▶ 10 bins to estimate $p_d(x_d|Y)$
- We therefore need 10d bins in total.

10^d vs 10d

Breaking the Curse

- Conditional independence drastically reduced the number of bins needed to cover the input space.
- From $\Theta(10^d)$ to $\Theta(d)$.

p(x/4=y) P(4=y) Idea

- Bayes Classifier needs a lot of data when d is big.
- But if the features are conditionally independent given the label, we don't need so much data.
- So let's just **assume** conditional independence.
- ► The result: the Naïve Bayes Classifier.

Naïve Bayes: The Algorithm

- Assume that $X_1, ..., X_d$ are mutually independent given the class label.
- Estimate one-dimensional densities p₁(x₁ | Y = y_i), ..., p_d(x_d | Y = y_i) however you'd like.

histograms, fitting univariate Gaussians, etc.

Pick the y_i which maximizes

$$p_1(x_1 \mid Y = y_i) \cdots p_2(x_d \mid Y = y_i) \mathbb{P}(Y = y_i)$$

But wait...

...are we allowed to just assume conditional independence?

The independence assumption is usually wrong, but it can work surprisingly well in practice.

Estimating Probabilites

> You can estimate $p(X_i|Y)$ however makes sense.

Popular: Gaussian Naïve Bayes.

- **Given**: player with height = 75 in, weight = 210 lbs.
- **Predict**: whether they are a forward or a guard.
- Let's use Gaussian Naïve Bayes.

Compute:

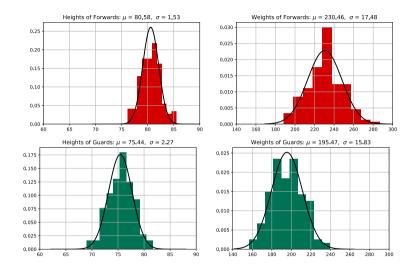
 $p(75 \text{ in, } 210 \text{ lbs} | Y = \text{forward})\mathbb{P}(Y = \text{forward})$ $p(75 \text{ in, } 210 \text{ lbs} | Y = \text{guard})\mathbb{P}(Y = \text{guard})$

► Using conditional independence assumption: p₁(75 in | Y = forward)·p₂(210 lbs | Y = forward)P(Y = forward) p₁(75 in | Y = guard)·p₂(210 lbs | Y = guard)P(Y = guard)

We need to estimate:

 $p_1(75 \text{ in } | Y = \text{forward})$ $p_1(75 \text{ in } | Y = \text{guard})$ $p_2(210 \text{ lbs } | Y = \text{forward})$ $p_2(210 \text{ lbs } | Y = \text{guard})$

- We'll fit 1-d Gaussians to:
 - heights of forwards.
 - heights of guards.
 - weights of forwards.
 - weights of guards.



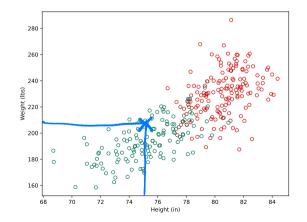
 $p_1(75 | Y = \text{forward}) \cdot p_2(210 | Y = \text{forward}) \cdot \mathbb{P}(Y = \text{forward})$ = $\mathcal{N}(75; 80.58, 1.53^2) \cdot \mathcal{N}(210; 230.46, 17.48^2) \cdot \frac{156}{300}$ ≈ 6.73×10^{-6}

 $p_1(75 | Y = \text{guard}) \cdot p_2(210 | Y = \text{guard}) \cdot \mathbb{P}(Y = \text{guard})$ = $\mathcal{N}(75; 75.44, 2.27^2) \cdot \mathcal{N}(210; 195.47, 15.83^2) \cdot \frac{144}{300}$ ≈ 5.88 × 10⁻⁵

About 85% accurate on test set.

Exercise

Are height and weight conditionally independent given the player's position?



► No!

Gaussian Naïve Bayes worked well even though the conditional independence assumption is not accurate.

Gaussian Naïve Bayes

- p(X₁ | Y) ··· p(X_d | Y) is a product of 1-d Gaussians with different means, variances.
- Remember: result is a *d*-dimensional Gaussian with diagonal covariance matrix:

$$C = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \sigma_d^2 \end{pmatrix}$$

Gaussian Naïve Bayes

- But in GNB, each class has own diagonal covariance matrix.
- Therefore: Gaussian Naïve Bayes is equivalent to QDA with diagonal covariances.

Beyond Gaussian

- Naïve Bayes is very flexible.
- Can use different parametric distributions for different features.
 - E.g., normal for feature 1, log normal for feature 2, etc.
- Can use non-parametric density estimation (densities) for other features.
- Can also handle discrete features.

Up next...

...predicting who survives on the Titanic.

Lecture 01 | Part 4

The Titanic

The Titanic Dataset

PassengerID	Survived	Pclass	Sex	Age	Fare	Embarked	FavColor
0	0	3	female	23.0	7.9250	S	yellow
1	0	1	male	47.0	52.0000	S	purple
2	0	3	male	36.0	7.4958	S	green
3	0	3	male	31.0	7.7500	Q	purple
4	0	3	male	19.0	7.8958	S	purple

Goal: predict survival given Age, Sex, Pclass.

Let's use Naïve Bayes

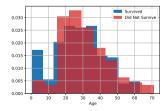
We'll pick y_i so as to maximize

 $p(\text{Age} = x_1 | Y = y_i) \cdot \mathbb{P}(\text{Sex} = x_2 | Y = y_i) \cdot \mathbb{P}(\text{Pclass} = x_3 | Y = y_i) \cdot \mathbb{P}(Y = y_i)$

We must choose how to estimate probabilities. Gaussians?

• How do we estimate $p(Age = x_1 | Y = y_i)$?

- Age is a continuous variable.
- Looks kind of bell-shaped, we'll fit Gaussians.



• How do we estimate $\mathbb{P}(\text{Sex} = x_1 | Y = y_i)$?

Sex is a discrete variable in this data set.

Fitting Gaussian makes no sense.

But estimating these probabilities is easy.

- Pclass, too, is categorical. Estimate in same way.
- ▶ You can estimate $\mathbb{P}(X_i|Y)$ however makes sense.
- **Can use different ways for different features**.
- Gaussian for age, simple ratio of counts for class, sex.

Example: The Titanic

- Using just age, sex, ticket class, Naïve Bayes is 70% accurate on test set.
- ▶ Not bad. Not great.
- To do better, add more features.

In High Dimensions

- Naïve Bayes can work well in high dimensions.
- Example: document classification.
 - Document represented by a "bag of words".
 - Pick a large number of words; say, 20,000.
 - Make a *d*-dimensional vector with *i*th entry counting number of occurrences of *i*th word.

Practical Issues

We are multiplying lots of small probabilities:

 $\mathbb{P}(X_1 \,|\, Y) \cdots \mathbb{P}(X_d \mid Y)$

Potential for underflow.

Practical Issues

- "Trick": work with log-probabilities instead.
- Pick the y_i which maximizes

$$\log \left[\mathbb{P}(X_{1} = x_{1} | Y = y_{i}) \cdots \mathbb{P}(X_{d} = x_{d} | Y = y_{i}) \mathbb{P}(Y = y_{i}) \right]$$

= $\log \mathbb{P}(X_{1} = x_{1} | Y = y_{i}) + \dots + \log \mathbb{P}(X_{d} = x_{d} | Y = y_{i}) + \log \mathbb{P}(Y = y_{i})$
= $\left(\sum_{j=1}^{d} \log \mathbb{P}(X_{j} = x_{j} | Y = y_{i}) \right) + \log \mathbb{P}(Y = y_{i})$