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Recap



Applying the Bayes Classifier▶ Predict the class 𝑦 which maximizes:𝑝𝑋( ⃗𝑋 = ⃗𝑥 | 𝑌 = 𝑦)ℙ(𝑌 = 𝑦)▶ We must estimate the density, 𝑝𝑋.▶ Two approaches:
1. Non-parametric (e.g., histograms)
2. Parametric (e.g., fit Gaussian with MLE)



Curse of Dimensionality▶ In practice, we have many features.▶ This means 𝑝𝑋( ⃗𝑋 = ⃗𝑥 | 𝑌 = 𝑦) is high dimensional.▶ Non-parametric estimators do not do well in high
dimensions due to the curse of dimensionality:▶ Data required grows exponentially with number of

features.



Responses▶ Parametric density estimation can fare better.▶ However, it too can suffer from the curse.▶ Today, a different approach: assume conditional
independence.
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What is Conditional Independence?



Remember: Independence▶ Events 𝐴 and 𝐵 are independent ifℙ(𝐴, 𝐵) = ℙ(𝐴) ⋅ ℙ(𝐵).▶ Equivalently, 𝐴 and 𝐵 are independent if1ℙ(𝐴 | 𝐵) = ℙ(𝐴)
1or ℙ(𝐵) = 0



Informally▶ 𝐴 and 𝐵 are independent if learning 𝐵 does not
influence your belief that 𝐴 happens.



Example
You draw one card from a deck of 52 cards. 𝐴 is the
event that the card is a heart, 𝐵 is the event that the
card is a face card (J,Q,K,A). Are these independent?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A♣: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

P(A) =1/2) P(A,B) =4/52
P(AIB)=1/2 P(A) =4 P(B) =E

Yes



Example
We’ve lost the King of Clubs! You draw one card from
this deck of 51 cards. 𝐴 is the event that the card is a
heart, 𝐵 is the event that the card is a face card
(J,Q,K,A). Are these independent?

♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A♣: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

P(A,B) =4/51

P(A) = P(B) =15/5)
=E,

No

p(B)
=15/5)

P(BIA)
=4/3



In the Real World...▶ ...true independence is rare.▶ Example, survivors of the titanic:

Survived Pclass Sex Age Fare Embarked FavColor
PassengerID

0 0 3 female 23.0 7.9250 S yellow
1 0 1 male 47.0 52.0000 S purple
2 0 3 male 36.0 7.4958 S green
3 0 3 male 31.0 7.7500 Q purple
4 0 3 male 19.0 7.8958 S purple
… … … … … … … …



In the Real World...▶ ℙ(Survived = 1) = .408▶ ℙ(Survived = 1 | FavColor = purple) = .4▶ Not independent...



In the Real World...▶ ℙ(Survived = 1) = .408▶ ℙ(Survived = 1 | FavColor = purple) = .4▶ Not independent... ...but “close”!



In the Real World...▶ ℙ(Survived = 1) = .408▶ ℙ(Survived = 1 |Pclass = 1) =

▶ Strong dependence.



In the Real World...▶ ℙ(Survived = 1) = .408▶ ℙ(Survived = 1 |Pclass = 1) = .657

▶ Strong dependence.



In the Real World...▶ ℙ(Survived = 1) = .408▶ ℙ(Survived = 1 |Pclass = 1) = .657▶ Strong dependence.



Remember: Conditional
Independence▶ Events 𝐴 and 𝐵 are conditionally independent

given 𝐶 if ℙ(𝐴, 𝐵 | 𝐶) = ℙ(𝐴 | 𝐶) ⋅ ℙ(𝐵 | 𝐶)▶ Equivalently2: ℙ(𝐴 | 𝐵, 𝐶) = ℙ(𝐴 | 𝐶)
2Or ℙ(𝐵) = 0 -



Informally▶ Suppose you know that 𝐶 has happened.▶ You have some belief that 𝐴 happens, given 𝐶.▶ 𝐴 and 𝐵 are conditionally independent given 𝐶 if
learning that 𝐵 happens in addition to 𝐶 does not
influence your belief that 𝐴 happens given 𝐶.



Very informally▶ 𝐴 and 𝐵 are conditionally independent given 𝐶 if
learning that 𝐵 happens in addition to 𝐶 gives
you no more information about 𝐴.



Example
We’ve lost the King of Clubs! You draw one card from
this deck of 51 cards. 𝐴 is the event that the card is a
heart, 𝐵 is the event that the card is a face card
(J,Q,K,A). Now suppose you know that the card is red.
Are 𝐴 and 𝐵 independent given this information?♥: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A♣: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A♠: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

P(A,BIC) =P(AI)
·P(BK)

P(A)B,c) =P(AIC)

-
C



Titanic Example▶ Survival and class are not independent.▶ ℙ(Survived = 1) = .408▶ ℙ(Survived = 1 |Pclass = 1) = .657▶ But they’re (close) to conditionally independent
given ticket price:▶ ℙ(Survived = 1 |PClass = 1, Fare > 50) = .708▶ ℙ(Survived = 1 | Fare > 50) = .696



More Variables▶ 𝑋1, 𝑋2, … , 𝑋𝑑 are mutually conditionally
independent given 𝑌 ifℙ(𝑋1, 𝑋2, … , 𝑋𝑑 | 𝑌) = ℙ(𝑋1 | 𝑌) ⋅ ℙ(𝑋2 | 𝑌)⋯ℙ(𝑋𝑑 | 𝑌)



Densities▶ If 𝐴 and 𝐵 are continuous random variables, their
joint density can be factored:𝑝(𝑎, 𝑏) = 𝑝𝐴(𝑎) ⋅ 𝑝𝐵(𝑏)▶ If 𝐴 and 𝐵 are conditionally independent given 𝐶,
then:𝑝(𝑎, 𝑏 | 𝐶 = 𝑐) = 𝑝𝐴(𝑎 | 𝐶 = 𝑐) ⋅ 𝑝𝐵(𝑏 | 𝐶 = 𝑐)

they are Independent



Densities▶ Suppose 𝑋1, … , 𝑋𝑑 are 𝑑 features, 𝑌 is class label.▶ If the features are not independent given 𝑌, then:𝑝( ⃗𝑥 | 𝑌 = 𝑦) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑 | 𝑌 = 𝑦)▶ Curse of dimensionality!



Densities▶ Suppose 𝑋1, … , 𝑋𝑑 are 𝑑 features, 𝑌 is class label.▶ However, if the features are mutually
conditionally independent given 𝑌, then:𝑝( ⃗𝑥 | 𝑌 = 𝑦) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑 | 𝑌 = 𝑦)= 𝑝1(𝑥1 | 𝑌 = 𝑦) ⋅ 𝑝2(𝑥2 | 𝑌 = 𝑦)⋯𝑝𝑑(𝑥𝑑 | 𝑌 = 𝑦)



Exercise
Are 𝑋1 and 𝑋2 (close to) conditionally independent
given 𝑌? Yes



Exercise
Are height and weight (close to) conditionally in-
dependent given the player’s position? Wo

P(H, IW, Green)

P(H) Green)
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How Conditional Independence Helps



Recall: The Bayes Classifier▶ To use the Bayes classifier, we must estimate𝑝( ⃗𝑥 | 𝑌 = 𝑦𝑖)
for each class 𝑦𝑖, where ⃗𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑).▶ Written differently, we need to estimate:𝑝(𝑥1, … , 𝑥𝑑 | 𝑌 = 𝑦𝑖)



Recall: Histogram Estimators▶ When 𝑋1, … , 𝑋𝑑 are continuous, we can use
histogram estimators.▶ Curse of Dimensionality: if we discretize each
dimension into 10 bins, there are 10𝑑 bins.



Conditional Independence to the
Rescue▶ Now suppose 𝑋1, … , 𝑋𝑑 are mutually conditionally

independent given 𝑌. Then:𝑝(𝑥1, … , 𝑥𝑑 | 𝑌 = 𝑦𝑖) = 𝑝1(𝑥1 | 𝑌 = 𝑦𝑖)𝑝2(𝑥2 | 𝑌 = 𝑦𝑖) ⋯𝑝𝑑(𝑥𝑑 | 𝑌 = 𝑦𝑖)▶ Instead of estimating 𝑝(𝑥1, … , 𝑥𝑑 | 𝑌), estimate𝑝1(𝑥1 | 𝑌), … , 𝑝𝑑(𝑥𝑑 | 𝑌) separately.



Breaking the Curse▶ Suppose we use histogram estimators.▶ If we discretize each dimension into 10 bins, we
need:▶ 10 bins to estimate 𝑝1(𝑥1|𝑌)▶ 10 bins to estimate 𝑝2(𝑥2|𝑌)▶ …▶ 10 bins to estimate 𝑝𝑑(𝑥𝑑|𝑌)▶ We therefore need 10𝑑 bins in total.



Breaking the Curse▶ Conditional independence drastically reduced
the number of bins needed to cover the input
space.▶ From Θ(10𝑑) to Θ(𝑑).

10d vs lOd



Idea▶ Bayes Classifier needs a lot of data when 𝑑 is big.▶ But if the features are conditionally independent
given the label, we don’t need so much data.▶ So let’s just assume conditional independence.▶ The result: the Naïve Bayes Classifier.

p(x/Y =y) P(4 =y)



Naïve Bayes: The Algorithm▶ Assume that 𝑋1, … , 𝑋𝑑 are mutually independent
given the class label.▶ Estimate one-dimensional densities𝑝1(𝑥1 | 𝑌 = 𝑦𝑖), …, 𝑝𝑑(𝑥𝑑 | 𝑌 = 𝑦𝑖) however you’d
like.▶ histograms, fitting univariate Gaussians, etc.▶ Pick the 𝑦𝑖 which maximizes𝑝1(𝑥1 | 𝑌 = 𝑦𝑖) ⋯ 𝑝2(𝑥𝑑 | 𝑌 = 𝑦𝑖)ℙ(𝑌 = 𝑦𝑖)



But wait...▶ ...are we allowed to just assume conditional
independence?▶ Sure!▶ The independence assumption is usually wrong,
but it can work surprisingly well in practice.



Estimating Probabilites▶ You can estimate 𝑝(𝑋𝑖|𝑌) however makes sense.▶ Popular: Gaussian Naïve Bayes.

e



Example: NBA▶ Given: player with height = 75 in, weight = 210 lbs.▶ Predict: whether they are a forward or a guard.▶ Let’s use Gaussian Naïve Bayes.



Example: NBA▶ Compute:𝑝(75 in, 210 lbs | 𝑌 = forward)ℙ(𝑌 = forward)𝑝(75 in, 210 lbs | 𝑌 = guard)ℙ(𝑌 = guard)▶ Using conditional independence assumption:𝑝1(75 in | 𝑌 = forward)⋅𝑝2(210 lbs | 𝑌 = forward)ℙ(𝑌 = forward)𝑝1(75 in | 𝑌 = guard) ⋅ 𝑝2(210 lbs | 𝑌 = guard)ℙ(𝑌 = guard)



Example: NBA▶ We need to estimate:𝑝1(75 in | 𝑌 = forward)𝑝1(75 in | 𝑌 = guard)𝑝2(210 lbs | 𝑌 = forward)𝑝2(210 lbs | 𝑌 = guard)



Example: NBA▶ We’ll fit 1-d Gaussians to:▶ heights of forwards.▶ heights of guards.▶ weights of forwards.▶ weights of guards.





Example: NBA

𝑝1(75 | 𝑌 = forward) ⋅ 𝑝2(210 | 𝑌 = forward) ⋅ ℙ(𝑌 = forward)= N (75; 80.58, 1.532) ⋅N (210; 230.46, 17.482) ⋅ 156300≈ 6.73 × 10−6
𝑝1(75 | 𝑌 = guard) ⋅ 𝑝2(210 | 𝑌 = guard) ⋅ ℙ(𝑌 = guard)= N (75; 75.44, 2.272) ⋅N (210; 195.47, 15.832) ⋅ 144300≈ 5.88 × 10−5



Example: NBA▶ About 85% accurate on test set.



Exercise
Are height and weight conditionally independent
given the player’s position? No

-



Example: NBA▶ No!▶ Gaussian Naïve Bayes worked well even though
the conditional independence assumption is not
accurate.



Gaussian Naïve Bayes▶ 𝑝(𝑋1 | 𝑌)⋯𝑝(𝑋𝑑 | 𝑌) is a product of 1-d Gaussians
with different means, variances.▶ Remember: result is a 𝑑-dimensional Gaussian
with diagonal covariance matrix:

𝐶 = (𝜎21 0 ⋯ 00 𝜎22 ⋯ 0⋯ ⋯ ⋯ ⋯0 0 0 𝜎2𝑑)



Gaussian Naïve Bayes▶ But in GNB, each class has own diagonal
covariance matrix.▶ Therefore: Gaussian Naïve Bayes is equivalent to
QDA with diagonal covariances.



Beyond Gaussian▶ Naïve Bayes is very flexible.▶ Can use different parametric distributions for
different features.▶ E.g., normal for feature 1, log normal for feature 2, etc.▶ Can use non-parametric density estimation
(densities) for other features.▶ Can also handle discrete features.

M



Up next...

...predicting who survives on the Titanic.
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The Titanic



The Titanic Dataset

Survived Pclass Sex Age Fare Embarked FavColor
PassengerID

0 0 3 female 23.0 7.9250 S yellow
1 0 1 male 47.0 52.0000 S purple
2 0 3 male 36.0 7.4958 S green
3 0 3 male 31.0 7.7500 Q purple
4 0 3 male 19.0 7.8958 S purple
… … … … … … … …

Goal: predict survival given Age, Sex, Pclass.



Let’s use Naïve Bayes▶ We’ll pick 𝑦𝑖 so as to maximize𝑝(Age = 𝑥1 | 𝑌 = 𝑦𝑖) ⋅ ℙ(Sex = 𝑥2 | 𝑌 = 𝑦𝑖) ⋅ ℙ(Pclass = 𝑥3 | 𝑌 = 𝑦𝑖) ⋅ ℙ(𝑌 = 𝑦𝑖)▶ We must choose how to estimate probabilities.
Gaussians?



Estimating Probabilities▶ How do we estimate 𝑝(Age = 𝑥1 | 𝑌 = 𝑦𝑖)?▶ Age is a continuous variable.▶ Looks kind of bell-shaped, we’ll fit Gaussians.



Estimating Probabilities▶ How do we estimate ℙ(Sex = 𝑥1 | 𝑌 = 𝑦𝑖)?▶ Sex is a discrete variable in this data set.▶ Fitting Gaussian makes no sense.▶ But estimating these probabilities is easy.



Estimating Probabilities

ℙ(Sex = male | Survived) ≈ # of survived and male# of survived= .4
ℙ(Sex = male |Did Not Survive) ≈ # of died and male# of died= .87



Estimating Probabilities▶ Pclass, too, is categorical. Estimate in same way.▶ You can estimate ℙ(𝑋𝑖|𝑌) however makes sense.▶ Can use different ways for different features.▶ Gaussian for age, simple ratio of counts for class,
sex.



Example: The Titanic▶ Using just age, sex, ticket class, Naïve Bayes is
70% accurate on test set.▶ Not bad. Not great.▶ To do better, add more features.



In High Dimensions▶ Naïve Bayes can work well in high dimensions.▶ Example: document classification.▶ Document represented by a “bag of words”.▶ Pick a large number of words; say, 20,000.▶ Make a 𝑑-dimensional vector with 𝑖th entry counting
number of occurrences of 𝑖th word.



Practical Issues▶ We are multiplying lots of small probabilities:ℙ(𝑋1|𝑌)⋯ℙ(𝑋𝑑 | 𝑌)▶ Potential for underflow.



Practical Issues▶ “Trick”: work with log-probabilities instead.▶ Pick the 𝑦𝑖 which maximizeslog [ℙ(𝑋1 = 𝑥1 | 𝑌 = 𝑦𝑖) ⋯ℙ(𝑋𝑑 = 𝑥𝑑 | 𝑌 = 𝑦𝑖)ℙ(𝑌 = 𝑦𝑖)]= logℙ(𝑋1 = 𝑥1 | 𝑌 = 𝑦𝑖) + … + logℙ(𝑋𝑑 = 𝑥𝑑 | 𝑌 = 𝑦𝑖) + logℙ(𝑌 = 𝑦𝑖)= ( 𝑑∑𝑗=1 logℙ(𝑋𝑗 = 𝑥𝑗 | 𝑌 = 𝑦𝑖)) + logℙ(𝑌 = 𝑦𝑖)


