
Lecture 15 | Part 1

Recall: Regression



Recall▶ We have seen the problem of regression.



Recall▶ Introduced empirical risk minimization (ERM):▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Used square loss▶ Step 3: minimize expected loss (empirical risk)▶ MSE (Mean Squared Error)



Recall: Least Squares▶ Goal: fit a function of the form 𝐻( ⃗𝑥; �⃗�) = Aug( ⃗𝑥) ⋅ �⃗�▶ In (ordinary) least squares regression, we
minimized the mean squared error:�⃗�∗ = argmin�⃗� 1𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2▶ Solution: �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



Observation▶ This the “curve fitting” approach to regression.▶ I.e., find a “line of best fit”.▶ There was no consideration of the (random)
process that generated the data.



Today▶ Take a probabilistic approach to regression.
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Probabilistic View of Regression



Probabilistic View of Regression▶ Note: There is uncertainty in the salary.

↑



Modeling Uncertainty▶ We can model this uncertainty using probability.

Salary = 𝑤0 + 𝑤1 × (Experience) + 𝜀▶ Here, 𝜀 is the (random) error.▶ What is a reasonable choice of distribution for 𝜀?





Error Distribution▶ It is reasonable to assume that the error
distribution is:▶ Symmetric: equally as likely to predict high as to

predict low▶ Centered at zero: mean error is zero▶ The Gaussian distribution (with mean 0) satisfies
this.

A.



Modeling Uncertainty▶ Assuming a Gaussian (Normal) distribution:
Salary = 𝑤0 + 𝑤1 × (Experience) +N (0, 𝜎2)⏟𝜀



Modeling Uncertainty▶ Equivalently:

Salary ∼ N (𝑤0 + 𝑤1 × Experience, 𝜎2)
:-....
S

I

I

I

P

z



In General▶ In general: 𝑌 ∼ N (Aug( ⃗𝑥) ⋅ �⃗�, 𝜎2)▶ That is: for any feature vector ⃗𝑥, the target 𝑌 is
drawn from a Gaussian centered at Aug( ⃗𝑥) ⋅ �⃗�.



Estimating Parameters▶ We assume the model:

Salary ∼ N (𝑤0 + 𝑤1 × Experience, 𝜎2)▶ Given some data, what parameters generated it?▶ What were 𝑤0, 𝑤1, 𝜎?▶ Estimate them with maximum likelihood?



....



Likelihood▶ Let 𝑝(𝑦; 𝜇, 𝜎) be the Gaussian pdf:𝑝(𝑦; 𝜇, 𝜎) = 1√2𝜋𝜎𝑒−(𝑦−𝜇)2/(2𝜎2)▶ We observe a data set {( ⃗𝑥(𝑖), 𝑦𝑖)}.▶ What is the likelihood of a choice of parameters�⃗�, 𝜎, with respect to the data?



Likelihood wrt a Point
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Likelihood wrt a Point
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▶ 𝑝(𝑦𝑖; 𝑤0 + 𝑤1𝑥(𝑖), 𝜎) measures likelihood with
respect to (𝑥(𝑖), 𝑦𝑖).
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Likelihood▶ In general, 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝜎)
measures likelihood with respect to single data
point ( ⃗𝑥(𝑖), 𝑦𝑖).▶ Likelihood with respect to data set:𝐿(�⃗�, 𝜎) = 𝑛∏𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝜎)



Log-Likelihood
Compute the log-likelihood from∏𝑛𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝜎).
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Log-Likelihood
Compute the log-likelihood from∏𝑛𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝜎).

Im axb=
In a tlub

In 2(w,0) =InreAngere

-JereAnger
e I



Log-Likelihood
Compute the log-likelihood from∏𝑛𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝜎).
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Log-Likelihood
Compute the log-likelihood from∏𝑛𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ �⃗�, 𝜎).
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Log-Likelihood▶ The log-likelihood is:�̃�(�⃗�, 𝜎) = − 12𝜎2 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2 + 𝑛2 ln 1𝜎2 − 𝑛2 ln(2𝜋)▶ We want to maximize this quantity.



Claim 1

argmax�⃗� [− 12𝜎2 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2 + 𝑛2 ln 1𝜎2 − 𝑛2 ln(2𝜋)]=argmax�⃗� [− 12𝜎2 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2]
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Claim 2

argmax�⃗� [− 12𝜎2 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2]=argmax�⃗� [−1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2]
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Claim 3

argmax�⃗� [−1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2]=argmin�⃗� [1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ �⃗� − 𝑦𝑖)2]▶ That is, minimize the mean squared error.



Main Idea
Mazimizing the likelihood of �⃗� with respect to the
data (assuming Gaussian error term) is equivalent
to minimizing mean squared error.



Solution▶ The maximum likelihood estimate for �⃗� is
therefore: �⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦▶ That is, the exact same as we obtained by
empirical risk minimization with the square loss.
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A Probabilistic View of Regularization



Recall: Ridge Regression▶ In ridge regression, we added a regularization
term: ‖�⃗�‖2.�⃗�∗ = argmin�⃗� 1𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2 + 𝜆‖�⃗�‖2▶ Solution: �⃗�∗ = (𝑋𝑇𝑋 + 𝑛𝜆𝐼)−1𝑋𝑇 ⃗𝑦▶ Helps control overfitting.



Probabilistic View▶ Regularization term ‖�⃗�‖2 was motivated by
observing that ‖�⃗�‖ tends to be large when
overfitting.▶ Now: motivate same term, probabilistically.▶ Will adopt a Bayesian perspective.



A Prior on Weights▶ Imagine we have yet to see the data.▶ There is no reason to believe that a given weight𝑤𝑖 is positive or negative.▶ We believe it is more likely to be small (close to
zero) than large.



A Prior on Weights▶ This prior belief is captured by assuming:𝑤𝑖 ∼ N (0, 𝑠2)▶ Note that in truth, 𝑤𝑖 is not random.▶ We are adopting a Bayesian view of probability;
it expresses level of belief.



A Prior on Weights▶ If each weight has distribution N (0, 𝑠2), then:�⃗� ∼ N (0⃗, 𝑠2 ⋅ 𝐼)▶ That is, the distribution of �⃗� has density:𝑝�⃗�(�⃗�) = 1(2𝜋𝑠2)𝑑/2𝑒−12 ‖�⃗�−0⃗‖2𝑠2
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Distribution of �⃗�▶ Using Bayes’ Rule:𝑝�⃗�(�⃗� | ⃗𝑥, 𝑦) ∝ 𝑝𝑦(𝑦 | �⃗�, ⃗𝑥)𝑝�⃗�(�⃗�)▶ What is the most probable value of �⃗�?



argmax�⃗� [𝑝�⃗�(�⃗� | ⃗𝑥, 𝑦)] = argmax�⃗� [𝑝𝑦(𝑦 | �⃗�, ⃗𝑥)𝑝�⃗�(�⃗�)]= argmax�⃗� ln [𝑝𝑦(𝑦 | �⃗�, ⃗𝑥)𝑝�⃗�(�⃗�)]= argmax�⃗� [ln 𝑝𝑦(𝑦 | �⃗�, ⃗𝑥) + ln 𝑝�⃗�(�⃗�)]= argmin�⃗� [− ln 𝑝𝑦(𝑦 | �⃗�, ⃗𝑥) − ln 𝑝�⃗�(�⃗�)]= argmin�⃗� [MSE(�⃗�) − ln 𝑝�⃗�(�⃗�)]



Deriving the Regularizer▶ Since 𝑝�⃗�(�⃗�) = 1(2𝜋𝑠2)𝑑/2𝑒−12 ‖�⃗�−0⃗‖2𝑠2
we have: − ln 𝑝�⃗�(�⃗�) = 𝑐 + 12𝑠2‖�⃗�‖2▶ Soargmin�⃗� [MSE(�⃗�) − ln 𝑝�⃗�(�⃗�)] = argmin�⃗� [MSE(�⃗�) + 12𝑠2⏟𝜆 ‖�⃗�‖2]



Main Idea
Placing a N (0, 𝑠2) prior on each weight and maxi-
mizing 𝑝�⃗�(�⃗� | ⃗𝑥, 𝑦) is equivalent to minimizing the‖�⃗�‖2-regularized mean squared error (ridge re-
gression).


