
Lecture 15 | Part 1

Recall: Regression



Recall▶ We have seen the problem of regression.



Recall▶ Introduced empirical risk minimization (ERM):▶ Step 1: choose a hypothesis class▶ Let’s assume we’ve chosen linear predictors▶ Step 2: choose a loss function▶ Used square loss▶ Step 3: minimize expected loss (empirical risk)▶ MSE (Mean Squared Error)



Recall: Least Squares▶ Goal: fit a function of the form 𝐻( ⃗𝑥; 𝑤⃗) = Aug( ⃗𝑥) ⋅ 𝑤⃗▶ In (ordinary) least squares regression, we
minimized the mean squared error:𝑤⃗∗ = argmin𝑤⃗ 1𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖); 𝑤⃗) − 𝑦𝑖)2▶ Solution: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



Observation▶ This the “curve fitting” approach to regression.▶ I.e., find a “line of best fit”.▶ There was no consideration of the (random)
process that generated the data.



Today▶ Take a probabilistic approach to regression.
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Probabilistic View of Regression



Probabilistic View of Regression▶ Note: There is uncertainty in the salary.

↑



Modeling Uncertainty▶ We can model this uncertainty using probability.

Salary = 𝑤0 + 𝑤1 × (Experience) + 𝜀▶ Here, 𝜀 is the (random) error.▶ What is a reasonable choice of distribution for 𝜀?





Error Distribution▶ It is reasonable to assume that the error
distribution is:▶ Symmetric: equally as likely to predict high as to

predict low▶ Centered at zero: mean error is zero▶ The Gaussian distribution (with mean 0) satisfies
this.

A.



Modeling Uncertainty▶ Assuming a Gaussian (Normal) distribution:
Salary = 𝑤0 + 𝑤1 × (Experience) +N (0, 𝜎2)⏟𝜀



Modeling Uncertainty▶ Equivalently:

Salary ∼ N (𝑤0 + 𝑤1 × Experience, 𝜎2)
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In General▶ In general: 𝑌 ∼ N (Aug( ⃗𝑥) ⋅ 𝑤⃗, 𝜎2)▶ That is: for any feature vector ⃗𝑥, the target 𝑌 is
drawn from a Gaussian centered at Aug( ⃗𝑥) ⋅ 𝑤⃗.



Estimating Parameters▶ We assume the model:

Salary ∼ N (𝑤0 + 𝑤1 × Experience, 𝜎2)▶ Given some data, what parameters generated it?▶ What were 𝑤0, 𝑤1, 𝜎?▶ Estimate them with maximum likelihood?



....



Likelihood▶ Let 𝑝(𝑦; 𝜇, 𝜎) be the Gaussian pdf:𝑝(𝑦; 𝜇, 𝜎) = 1√2𝜋𝜎𝑒−(𝑦−𝜇)2/(2𝜎2)▶ We observe a data set {( ⃗𝑥(𝑖), 𝑦𝑖)}.▶ What is the likelihood of a choice of parameters𝑤⃗, 𝜎, with respect to the data?



Likelihood wrt a Point
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Likelihood wrt a Point
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▶ 𝑝(𝑦𝑖; 𝑤0 + 𝑤1𝑥(𝑖), 𝜎) measures likelihood with
respect to (𝑥(𝑖), 𝑦𝑖).

it



Likelihood▶ In general, 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝜎)
measures likelihood with respect to single data
point ( ⃗𝑥(𝑖), 𝑦𝑖).▶ Likelihood with respect to data set:𝐿(𝑤⃗, 𝜎) = 𝑛∏𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝜎)



Log-Likelihood
Compute the log-likelihood from∏𝑛𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝜎).
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Log-Likelihood
Compute the log-likelihood from∏𝑛𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝜎).
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Log-Likelihood
Compute the log-likelihood from∏𝑛𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝜎).
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Log-Likelihood
Compute the log-likelihood from∏𝑛𝑖=1 𝑝(𝑦𝑖;Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗, 𝜎).
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Log-Likelihood▶ The log-likelihood is:𝐿̃(𝑤⃗, 𝜎) = − 12𝜎2 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2 + 𝑛2 ln 1𝜎2 − 𝑛2 ln(2𝜋)▶ We want to maximize this quantity.



Claim 1

argmax𝑤⃗ [− 12𝜎2 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2 + 𝑛2 ln 1𝜎2 − 𝑛2 ln(2𝜋)]=argmax𝑤⃗ [− 12𝜎2 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2]
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Claim 2

argmax𝑤⃗ [− 12𝜎2 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2]=argmax𝑤⃗ [−1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2]
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Claim 3

argmax𝑤⃗ [−1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2]=argmin𝑤⃗ [1𝑛 𝑛∑𝑖=1 (Aug( ⃗𝑥(𝑖)) ⋅ 𝑤⃗ − 𝑦𝑖)2]▶ That is, minimize the mean squared error.



Main Idea
Mazimizing the likelihood of 𝑤⃗ with respect to the
data (assuming Gaussian error term) is equivalent
to minimizing mean squared error.



Solution▶ The maximum likelihood estimate for 𝑤⃗ is
therefore: 𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦▶ That is, the exact same as we obtained by
empirical risk minimization with the square loss.
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A Probabilistic View of Regularization



Recall: Ridge Regression▶ In ridge regression, we added a regularization
term: ‖𝑤⃗‖2.𝑤⃗∗ = argmin𝑤⃗ 1𝑛 𝑛∑𝑖=1 (𝐻( ⃗𝑥(𝑖); 𝑤⃗) − 𝑦𝑖)2 + 𝜆‖𝑤⃗‖2▶ Solution: 𝑤⃗∗ = (𝑋𝑇𝑋 + 𝑛𝜆𝐼)−1𝑋𝑇 ⃗𝑦▶ Helps control overfitting.



Probabilistic View▶ Regularization term ‖𝑤⃗‖2 was motivated by
observing that ‖𝑤⃗‖ tends to be large when
overfitting.▶ Now: motivate same term, probabilistically.▶ Will adopt a Bayesian perspective.



A Prior on Weights▶ Imagine we have yet to see the data.▶ There is no reason to believe that a given weight𝑤𝑖 is positive or negative.▶ We believe it is more likely to be small (close to
zero) than large.



A Prior on Weights▶ This prior belief is captured by assuming:𝑤𝑖 ∼ N (0, 𝑠2)▶ Note that in truth, 𝑤𝑖 is not random.▶ We are adopting a Bayesian view of probability;
it expresses level of belief.



A Prior on Weights▶ If each weight has distribution N (0, 𝑠2), then:𝑤⃗ ∼ N (0⃗, 𝑠2 ⋅ 𝐼)▶ That is, the distribution of 𝑤⃗ has density:𝑝𝑤⃗(𝑤⃗) = 1(2𝜋𝑠2)𝑑/2𝑒−12 ‖𝑤⃗−0⃗‖2𝑠2

~



Distribution of 𝑤⃗▶ Using Bayes’ Rule:𝑝𝑤⃗(𝑤⃗ | ⃗𝑥, 𝑦) ∝ 𝑝𝑦(𝑦 | 𝑤⃗, ⃗𝑥)𝑝𝑤⃗(𝑤⃗)▶ What is the most probable value of 𝑤⃗?



argmax𝑤⃗ [𝑝𝑤⃗(𝑤⃗ | ⃗𝑥, 𝑦)] = argmax𝑤⃗ [𝑝𝑦(𝑦 | 𝑤⃗, ⃗𝑥)𝑝𝑤⃗(𝑤⃗)]= argmax𝑤⃗ ln [𝑝𝑦(𝑦 | 𝑤⃗, ⃗𝑥)𝑝𝑤⃗(𝑤⃗)]= argmax𝑤⃗ [ln 𝑝𝑦(𝑦 | 𝑤⃗, ⃗𝑥) + ln 𝑝𝑤⃗(𝑤⃗)]= argmin𝑤⃗ [− ln 𝑝𝑦(𝑦 | 𝑤⃗, ⃗𝑥) − ln 𝑝𝑤⃗(𝑤⃗)]= argmin𝑤⃗ [MSE(𝑤⃗) − ln 𝑝𝑤⃗(𝑤⃗)]



Deriving the Regularizer▶ Since 𝑝𝑤⃗(𝑤⃗) = 1(2𝜋𝑠2)𝑑/2𝑒−12 ‖𝑤⃗−0⃗‖2𝑠2
we have: − ln 𝑝𝑤⃗(𝑤⃗) = 𝑐 + 12𝑠2‖𝑤⃗‖2▶ Soargmin𝑤⃗ [MSE(𝑤⃗) − ln 𝑝𝑤⃗(𝑤⃗)] = argmin𝑤⃗ [MSE(𝑤⃗) + 12𝑠2⏟𝜆 ‖𝑤⃗‖2]



Main Idea
Placing a N (0, 𝑠2) prior on each weight and maxi-
mizing 𝑝𝑤⃗(𝑤⃗ | ⃗𝑥, 𝑦) is equivalent to minimizing the‖𝑤⃗‖2-regularized mean squared error (ridge re-
gression).


