
DSC 190 - Discussion 02

Problem 1.

In lecture, we saw that inserting an element into an existing heap takes Θ(log n) time in the worst case,
where n is the number of elements currently in the heap. This means that if we start with an empty heap
and insert n elements, the time taken in the worst case is Θ(n log n). In this problem, we’ll see that we can
actually build a heap in Θ(n) time if we already have all of the elements to be inserted stored in an array.

a) Now suppose we have an array with n elements that we wish to turn into a heap. We will do this by
calling ._push_down(i) on each heap node, but in a particular order. We don’t need to call it on the
leaf nodes, as they are already as low as they can go. Instead, we’ll start by calling .push_down(i)
on the nodes at height 1, then nodes at height 2, and so on, going from right to left.

Implement this strategy in code.

b) Show that building a heap in this way takes Θ(n) time, where n is the length of the array.

Hint:
∑∞

k=0 kx
k = x

(1−x)2

c) (Extra) Let’s check that starting from an empty heap and inserting n elements one by one actually
does take Θ(n log n) time overall. This is a little trickier than it might seem, since n is changing as
we insert elements. The first insert takes time roughly c log 1 (for some constant c), the second takes
time c log 2, and so forth, until the last takes time c log n. So the total time is:

c (log 1 + log 2 + log 3 + . . .+ log n)

Show that this is Θ(n log n).

Hint: the upper bound is easier than the lower bound. For the lower bound, try splitting the sum in
half and working with just the larger half.

Problem 2.

Describe a simple algorithm which takes in an array of size n and an integer parameter k and returns the k
most frequent elements of the array. State the time complexity of your approach.

Example: given [1, 9, 2, 4, 5, 2, 3, 4, 1, 1, 5], and k = 3, return 1, 2, and 5 (in no particular
order).

1


