DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 1 | Part 1

Welcome

Advanced Data Structures and Algorithms

(for data science)

Brand new.

- Modeled (partly) after CSE 100/101.
- But with more data science flavor.

Roadmap

- Advanced Data Structures
 - Dynamic Arrays
 - AVL Trees
 - Heaps
 - Disjoint Set Forests
- Nearest Neighbor Queries
 - KD-Trees
 - Locality Sensitive Hashing

Roadmap

- Strings
 - Tries and Suffix Trees
 - Knuth-Morris-Pratt and Rabin-Karp string search
- Algorithm Design
 - Divide and Conquer
 - Greedy Algorithms
 - Dynamic Programming (Viterbi Algorithm)
 - Backtracking, Branch and Bound
 - Linear Time Sorting; Sort with Noisy Comparator

Roadmap?

- Sketching and Streaming
 - Count-min-sketch
 - Bloom filters
 - Reservoir Sampling
- ► Theory of Computation
 - ► NP-Completeness and NP-Hardness
 - Computationally-hard problems in ML/DS

Roadmap??

- Other
 - Regular Expressions
 - ► Linear Programming
 - ▶ ?

Prerequisite Knowledge

- Python
- Basic Data Structures and Algorithms
 - ▶ DSC 30, DSC 40B¹

¹outside of Winter 2019

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 1 | Part 2

Review of Time Complexity Analysis

Time Complexity Analysis

- Determine efficiency of code without running it.
- Idea: find a formula for time taken as a function of input size.

Advantages of Time Complexity

- 1. Doesn't depend on the computer.
- 2. Reveals which inputs are slow, which are fast.
- 3. Tells us how algorithm scales.

Counting Operations

Abstraction: certain basic operations take constant time, no matter how large the input data set is.

- Example: addition of two integers, assigning a variable, etc.
- Idea: count basic operations

Example

```
def mean(numbers):
    total = 0
    n = len(numbers)
    for x in numbers:
        total += x
    return total / n
```

Theta Notation, Informally

 \triangleright $\Theta(\cdot)$ forgets constant factors, lower-order terms.

$$5n^3 + 3n^2 + 42 = \Theta(n^3)$$

Theta Notation, Informally

 $ightharpoonup f(n) = \Theta(g(n))$ if f(n) "grows like" g(n).

$$5n^3 + 3n^2 + 42 = \Theta(n^3)$$

Theta Notation Examples

$$\triangleright$$
 4n² + 3n - 20 = $\Theta(n^2)$

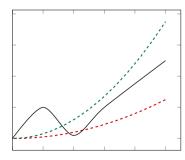
$$ightharpoonup 3n + \sin(4\pi n) = \Theta(n)$$

$$\triangleright 2^n + 100n = \Theta(2^n)$$

Definition

We write $f(n) = \Theta(g(n))$ if there are positive constants N, c_1 and c_2 such that for all $n \ge N$:

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$



Main Idea

If $f(n) = \Theta(g(n))$, then f can be "sandwiched" between copies of g when n is large.

Other Bounds

- F = Θ(g) means that f is both **upper** and **lower** bounded by factors of g.
- Sometimes we only have (or care about) upper bound or lower bound.

We have notation for that, too.

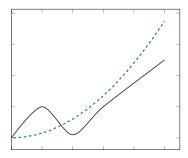
Big-O Notation, Informally

- Sometimes we only care about upper bound.
- f(n) = O(g(n)) if f(n) "grows at most as fast" as g(n).
- Examples:
 - \triangleright 4 $n^2 = O(n^{100})$
 - \rightarrow 4n² = O(n³)
 - \blacktriangleright 4n² = O(n²) and 4n² = $\Theta(n^2)$

Definition

We write f(n) = O(g(n)) if there are positive constants N and c such that for all $n \ge N$:

$$f(n) \le c \cdot g(n)$$



Big-Omega Notation

- Sometimes we only care about lower bound.
- Intuitively: $f(n) = \Omega(g(n))$ if f(n) "grows at least as fast" as g(n).

 $\Omega \geq$

Examples:

$$\triangleright$$
 4 $n^{100} = \Omega(n^5)$

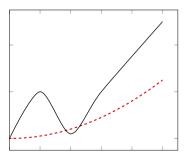
$$\triangleright$$
 4n² = $\Omega(n)$

$$\blacktriangleright$$
 4n² = $\Omega(n^2)$ and 4n² = $\Theta(n^2)$

Definition

We write $f(n) = \Omega(g(n))$ if there are positive constants N and c such that for all $n \ge N$:

$$c_1 \cdot g(n) \leq f(n)$$



Sums of Theta

► If
$$f_1(n) = Θ(g_1(n))$$
 and $f_2(n) = Θ(g_2(n))$, then

$$f_1(n) + f_2(n) = \Theta(g_1(n) + g_2(n))$$

= $\Theta(\max(g_1(n), g_2(n)))$

Useful for sequential code.

$$\begin{cases} \begin{cases} \mathcal{O}(n^2) \\ \begin{cases} \mathcal{O}(n^3) \end{cases} \end{cases}$$

Products of Theta

If $f_1(n) = Θ(g_1(n))$ and $f_2(n) = Θ(g_2(n))$, then

$$f_1(n)\cdot f_2(n) = \Theta(g_1(n)\cdot g_2(n))$$

Example

def foo(n):
for i in range(
$$3*n + 4$$
, $5n**2 - 2*n + 5$):
for j in range($500*n$, $n**3$):
print(i, j)

$$\bigcirc(n^3)$$

$$\bigcirc(n^3)$$

$$\bigcirc(n^3)$$

$$\{4, 12, 42, 21, 7\}$$

2 Linear Search

- ▶ **Given**: an array arr of numbers and a target t.
- Find: the index of t in arr, or None if it is missing.

```
def linear_search(arr, t):
    for i, x in enumerate(arr):
        if x == t:
        return i
```

return None

Exercise

What is the time complexity of linear_search?

The Best Case

- When t is the very first element.
- ► The loop exits after one iteration.
- ▶ Θ(1) time?

The Worst Case

- When t is not in the array at all.
- ► The loop exits after *n* iterations.
- \triangleright $\Theta(n)$ time?

Time Complexity

- linear_search can take vastly different amounts of time on two inputs of the same size.
 - Depends on actual elements as well as size.
- There is no single, overall time complexity here.
- Instead we'll report best and worst case time complexities.

Best Case Time Complexity

How does the time taken in the **best case** grow as the input gets larger?

Definition

Define $T_{\text{best}}(n)$ to be the **least** time taken by the algorithm on any input of size n.

The asymptotic growth of $T_{\text{best}}(n)$ is the algorithm's **best case time complexity**.

Best Case

- In linear_search's **best case**, $T_{best}(n) = c$, no matter how large the array is.
- ► The **best case time complexity** is $\Theta(1)$.

Worst Case Time Complexity

How does the time taken in the worst case grow as the input gets larger?

Definition

Define $T_{\text{worst}}(n)$ to be the **most** time taken by the algorithm on any input of size n.

The asymptotic growth of $T_{\text{worst}}(n)$ is the algorithm's worst case time complexity.

Worst Case

- In the worst case, linear_search iterates through the entire array.
- ► The worst case time complexity is $\Theta(n)$.

Faux Pas

- Asymptotic time complexity is not a complete measure of efficiency.
- \triangleright $\Theta(n)$ is not always better than $\Theta(n^2)$.
- ► Why?

Faux Pas

▶ Why? Asymptotic notation "hides the constants".

$$T_1(n) = 1,000,000n = \Theta(n)$$

$$T_2(n) = 0.00001n^2 = \Theta(n^2)$$

▶ But $T_1(n)$ is worse for all but really large n.

Main Idea

Asymptotic time complexity is not the **only** way to measure efficiency, and it can be misleading.

Sometimes even a $\Theta(2^n)$ algorithm is better than a $\Theta(n)$ algorithm, if the data size is small.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 1 | Part 3

Arrays and Linked Lists

Memory

► To access a value, we must know its **address**.

1			.10	l .						l
1			uL	l .						l
1			-1-	l .						l

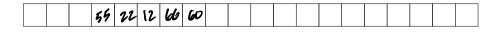
Sequences

- How do we store an ordered sequence?
 - e.g.: 55, 22, 12, 66, 60
- Array? Linked list?

Arrays

Store elements contiguously.

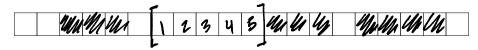
• e.g.: 55, 22, 12, 66, 60



NumPy arrays are... arrays.

Allocation

- Memory is shared resource.
- A chunk of memory of fixed size has to be reserved (allocated) for the array.
- The size has to be known beforehand.



Arrays

- ► To access an element, we need its address.
- **Key:** Addresses are easily calculated.
 - For kth element: address of first + ($k \times 64$ bits)
- ightharpoonup Therefore, arrays support $\Theta(1)$ -time access.

Downsides of Arrays

- ► Homogeneous; every element must be same size.
- To resize the array, a totally new chunk of memory has to be found; old values copied over.

Array Time Complexities

- ightharpoonup Retrieve kth element: Θ(1) (good).
- \triangleright Append/pop element at end: $\Theta(n)$ (bad).
- ▶ Insert/remove in middle: $\Theta(n)$ (bad).
- ▶ Allocation: $\Theta(n)$ if initialized.² else $\Theta(1)$

²On Linux this is done lazily, as can be seen by timing np. zeros

```
>>> arr = np.array([1, 2, 3])
>>> np.append(arr, 4) # takes Theta(n) time!
array([1, 2, 3, 4])
```

```
results = np.array([])
for i in np.arange(100):
    result = run_simulation()
    results = np.append(results, result)
```

► This was **bad** code!

$$(+2+3+...+n)$$

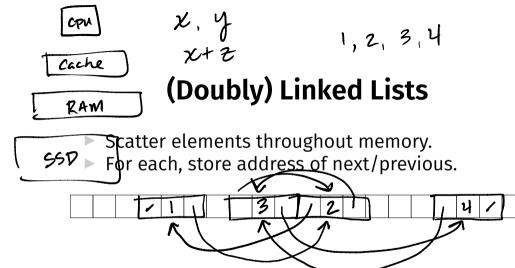
We allocate/copy a quadratic number of elements:

$$1 + 2 + 3 + ... + 100 = \frac{100 \times 101}{2} = 5050$$
1st iter 2nd iter 3rd iter

Better: pre-allocate.

```
(n)
```

```
results = np.empty(100)
for i in np.arange(100):
    results[i] = run_simulation()
```



Linked Lists

- Each element has an address.
- Keep track of the address of first/last elements.
- Have to find address of middle elements by looping.

Linked List Time Complexities

- Retrieve kth element:
 - \triangleright $\Theta(k)$ if you don't know address (bad)³
 - \triangleright $\Theta(1)$ if you do
- \triangleright Append/pop element at start/end: $\Theta(1)$ (good).
- ► Insert/remove kth element:
 - \triangleright $\Theta(k)$ if you don't know address (bad)
 - \triangleright $\Theta(1)$ if you do
- Allocation not needed! (good)

³assumes search starts from beginning

Tradeoffs

- Arrays are better for numerical algorithms.
 - Arrays have good cache performance.
- Linked lists are better for stacks and queues.

Main Idea

Different data structures optimize for different operations.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 1 | Part 4

Dynamic Arrays

Motivation

- Can we have the best of both worlds?
- \triangleright $\Theta(1)$ time access like an array.
- \triangleright $\Theta(1)$ time append like a linked list.
- Yes! (sort of)

The Idea

- Allocate memory for an underlying array.
 - ▶ say, 512 elements
 - ► This is the **physical size**.
- To append element, insert into first unused slot.
 - Number of elements used is the logical size.
 - ▶ Θ(1) time.

ſ										
L										1

The Idea

- We'll eventually run out of unused slots.
- Fix: allocate a new underlying array whose physical size is y times as large.
 - γ is the growth factor.
 - \triangleright Commonly, γ = 2; i.e., double its size.
 - Takes Θ(k) time, where k is current size.

Example

```
>>> arr = DynamicArray(initial_physical_size=4)
>>> arr.append(1)
>>> arr.append(2)
>>> arr.append(3)
>>> arr.append(4)
>>> arr.append(5)
```


DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 1 | Part 5

Amortized Analysis

Analysis

- Appending takes Θ(1) time usually...
- ▶ ...but takes $\Theta(k)$ time when we run out of slots.
 - ▶ Where *k* is current size of sequence.

The Key

- Resizing is expensive, but rare.
 - If $\gamma = 2$, each new resize is twice as expensive, but happens half as often.
- Thus, the cost per append is small.
- Amortize the cost over all previous appends.

Amortized Time Complexity

► The **amortized** time for an append is:

$$T_{\text{amort}}(n) = \frac{\text{total time for } n \text{ appends}}{n}$$

► We'll see that $T_{amort}(n) = \Theta(1)$.

Amortized Analysis

```
total time for n appends
=
total time for non-growing appends
+
total time for growing appends
```

Counting Growing Appends

- Want to calculate time taken by growing appends.
- First: how many appends caused a resize?
 - \triangleright β : initial physical size
 - γ: growth factor

Counting Growing Appends

- ► Suppose initial physical size is β = 512, and γ = 2
- Resizes occur on append #:

► In general, resizes occur on append #:

$$\beta \gamma^0, \beta \gamma^1, \beta \gamma^2, \beta \gamma^3, ...$$

Counting Growing Appends

- In a sequence of *n* appends, how many caused the physical size to grow?
- Simplification: Assume n is such that nth append caused a resize. Then, for some $x \in \{0, 1, 2, ...\}$:

$$n = \beta y^x$$

If x = 0 there was 1 resize; if x = 1 there were 2; etc.

Counting Growing Appends

► Solving for *x*:

$$x = \log_{\gamma} \frac{n}{\beta}$$

- ► Check: without assumption, $x = \lfloor \log_v \frac{n}{B} \rfloor$
- Number of resizes is $\lfloor \log_v \frac{n}{\beta} \rfloor + 1$

Counting Growing Appends

- Number of resizes is $\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1$
- ► Check with γ = 2, β = 512, n = 400
 - Correct # of resizes: 0
- \triangleright Check with y = 2, β = 512, n = 1100
 - Correct # of resizes: 2

- How much time was taken across all appends that caused resizes?
- Assumption: resizing an array with physical size k takes time $ck = \Theta(k)$.
 - \triangleright c is a constant that depends on γ .

- ightharpoonup Time for first resize: cβ.
- ightharpoonup Time for second resize: $c\gamma\beta$.
- ► Time for third resize: $c\gamma^2\beta$.
- ► Time for *j*th resize: $c\gamma^{j-1}\beta$.
- ► This is a **geometric progression**.

- ► Time for *j*th resize: $c\gamma^{j-1}\beta$.
- Suppose there are r resizes.
- Total time:

$$c\beta \sum_{i=1}^{r} \gamma^{j-1} = c\beta \sum_{i=0}^{r} \gamma^{j}$$

Recall: Geometric Sum

From some class you've taken:

$$\sum_{p=0}^{N} x^p = \frac{1 - x^{N+1}}{1 - x}$$

Example:

1 + 2 + 4 + 8 + 16 =
$$\sum_{p=0}^{4} 2^p = \frac{1 - 2^5}{1 - 2} = 31$$

▶ Total time:

$$c\beta \sum_{j=0}^{r} \gamma^{j} = c\beta \frac{1 - \gamma^{r+1}}{1 - \gamma}$$

Remember: in *n* appends there are $r = \lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1$ resizes.

▶ Total time:

$$c\beta \frac{1 - \gamma^{r+1}}{1 - \gamma} = c\beta \frac{1 - \gamma^{\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 2}}{1 - \gamma}$$
$$= \Theta(n)$$

Amortized Analysis

```
total time for n appends
=
total time for non-growing appends
+
Θ(n) ← total time for growing appends
```

In a sequence of n appends, how many are non-growing?

$$n - \left(\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1 \right) = \Theta(n)$$

- ightharpoonup Time for one such append: $\Theta(1)$.
- ► Total time: $\Theta(n) \times \Theta(1) = \Theta(n)$.

Amortized Analysis

```
total time for n appends
```

```
=
```

 $\Theta(n)$

← total time for **non-growing** appends

```
+
```

 $\Theta(n) \leftarrow \text{total time for growing appends}$

Amortized Time Complexity

► The **amortized** time for an append is:

$$T_{\text{amort}}(n) = \frac{\text{total time for } n \text{ appends}}{n}$$
$$= \frac{\Theta(n)}{n}$$
$$= \Theta(1)$$

Dynamic Array Time Complexities

- ightharpoonup Retrieve kth element: $\Theta(1)$
- Append/pop element at start/end:
 - \triangleright $\Theta(1)$ best case
 - \triangleright $\Theta(n)$ worst case (where n = current size)
 - ▶ Θ(1) amortized
- ▶ Insert/remove in middle: $\Theta(n)$
 - May or may not need resize, still $\Theta(n)$!

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 1 | Part 6

Practicalities

Advantages

- Great cache performance (it's an array).
- ► Fast access.

▶ Don't need to know size in advance of allocation.

Downsides

- Wasted memory.
- Expensive deletion in middle.

Implementations

Python: list

► C++: std::vector

► Java: ArrayList

Exercise

Why do we need np.array? Python's list is a dynamic array, isn't that better?

In defense of np.array

Memory savings are one reason.

Bigger reason: using Python's list to store numbers does not have good cache performance.