
Lecture 1 | Part 1

Welcome!

Advanced Data Structures and
Algorithms
(for data science)

▶ Second time being taught.

▶ Modeled (partly) after CSE 100/101.

▶ But with more data science flavor.

Roadmap

▶ Advanced Data Structures
▶ Dynamic Arrays
▶ AVL Trees
▶ Heaps
▶ Disjoint Set Forests

▶ Nearest Neighbor Queries
▶ KD-Trees
▶ Locality Sensitive Hashing

Roadmap

▶ Strings
▶ Tries and Suffix Trees
▶ Knuth-Morris-Pratt and Rabin-Karp string search

▶ Algorithm Design
▶ Divide and Conquer
▶ Greedy Algorithms
▶ Dynamic Programming (Viterbi Algorithm)
▶ Backtracking, Branch and Bound
▶ Linear Time Sorting; Sort with Noisy Comparator

Roadmap

▶ Sketching and Streaming
▶ Count-min-sketch
▶ Bloom filters
▶ Reservoir Sampling?

▶ Theory of Computation
▶ NP-Completeness and NP-Hardness
▶ Computationally-hard problems in ML/DS

Roadmap?

▶ Other
▶ Regular Expressions
▶ Linear Programming
▶ ?

Prerequisite Knowledge

▶ Python

▶ Basic Data Structures and Algorithms
▶ DSC 30, DSC 40B

(syllabus)

Lecture 1 | Part 2

Review of Time Complexity Analysis

Time Complexity Analysis

▶ Determine efficiency of code without running it.

▶ Idea: find a formula for time taken as a function
of input size.

Advantages of Time Complexity

1. Doesn’t depend on the computer.

2. Reveals which inputs are slow, which are fast.

3. Tells us how algorithm scales.

Counting Operations

▶ Abstraction: certain basic operations take
constant time, no matter how large the input
data set is.

▶ Example: addition of two integers, assigning a
variable, etc.

▶ Idea: count basic operations

Example
def mean(numbers):

total = 0
n = len(numbers)
for x in numbers:

total += x
return total / n

Theta Notation, Informally

▶ Θ(⋅) forgets constant factors, lower-order terms.

5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)

Theta Notation, Informally

▶ 𝑓(𝑛) = Θ(𝑔(𝑛)) if 𝑓(𝑛) “grows like” 𝑔(𝑛).

5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)

Theta Notation Examples

▶ 4𝑛2 + 3𝑛 − 20 = Θ(𝑛2)

▶ 3𝑛 + sin(4𝜋𝑛) = Θ(𝑛)

▶ 2𝑛 + 100𝑛 = Θ(2𝑛)

Definition

We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive con-
stants 𝑁, 𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁:

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

Main Idea

If 𝑓(𝑛) = Θ(𝑔(𝑛)), then 𝑓 can be “sandwiched” be-
tween copies of 𝑔 when 𝑛 is large.

Other Bounds

▶ 𝑓 = Θ(𝑔) means that 𝑓 is both upper and lower
bounded by factors of 𝑔.

▶ Sometimes we only have (or care about) upper
bound or lower bound.

▶ We have notation for that, too.

Big-O Notation, Informally

▶ Sometimes we only care about upper bound.

▶ 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if 𝑓(𝑛) “grows at most as fast” as 𝑔(𝑛).

▶ Examples:
▶ 4𝑛2 = 𝑂(𝑛100)
▶ 4𝑛2 = 𝑂(𝑛3)
▶ 4𝑛2 = 𝑂(𝑛2) and 4𝑛2 = Θ(𝑛2)

Definition

We write 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if there are positive con-
stants 𝑁 and 𝑐 such that for all 𝑛 ≥ 𝑁:

𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)

Big-Omega Notation

▶ Sometimes we only care about lower bound.

▶ Intuitively: 𝑓(𝑛) = Ω(𝑔(𝑛)) if 𝑓(𝑛) “grows at least
as fast” as 𝑔(𝑛).

▶ Examples:
▶ 4𝑛100 = Ω(𝑛5)
▶ 4𝑛2 = Ω(𝑛)
▶ 4𝑛2 = Ω(𝑛2) and 4𝑛2 = Θ(𝑛2)

Definition

We write 𝑓(𝑛) = Ω(𝑔(𝑛)) if there are positive con-
stants 𝑁 and 𝑐 such that for all 𝑛 ≥ 𝑁:

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛)

Sums of Theta

▶ If 𝑓1(𝑛) = Θ(𝑔1(𝑛)) and 𝑓2(𝑛) = Θ(𝑔2(𝑛)), then

𝑓1(𝑛) + 𝑓2(𝑛) = Θ(𝑔1(𝑛) + 𝑔2(𝑛))
= Θ(max(𝑔1(𝑛), 𝑔2(𝑛)))

▶ Useful for sequential code.

Products of Theta

▶ If 𝑓1(𝑛) = Θ(𝑔1(𝑛)) and 𝑓2(𝑛) = Θ(𝑔2(𝑛)), then

𝑓1(𝑛) ⋅ 𝑓2(𝑛) = Θ(𝑔1(𝑛) ⋅ 𝑔2(𝑛))

Example

def foo(n):
for i in range(3*n + 4, 5n**2 - 2*n + 5):

for j in range(500*n, n**3):
print(i, j)

Linear Search

▶ Given: an array arr of numbers and a target t.

▶ Find: the index of t in arr, or None if it is missing.

def linear_search(arr, t):
for i, x in enumerate(arr):

if x == t:
return i

return None

Exercise

What is the time complexity of linear_search?

The Best Case

▶ When t is the very first element.

▶ The loop exits after one iteration.

▶ Θ(1) time?

The Worst Case

▶ When t is not in the array at all.

▶ The loop exits after 𝑛 iterations.

▶ Θ(𝑛) time?

Time Complexity

▶ linear_search can take vastly different
amounts of time on two inputs of the same size.
▶ Depends on actual elements as well as size.

▶ There is no single, overall time complexity here.

▶ Instead we’ll report best and worst case time
complexities.

Best Case Time Complexity

▶ How does the time taken in the best case grow
as the input gets larger?

Definition

Define 𝑇best(𝑛) to be the least time taken by the al-
gorithm on any input of size 𝑛.

The asymptotic growth of 𝑇best(𝑛) is the algorithm’s
best case time complexity.

Best Case

▶ In linear_search’s best case, 𝑇best(𝑛) = 𝑐, no
matter how large the array is.

▶ The best case time complexity is Θ(1).

Worst Case Time Complexity

▶ How does the time taken in the worst case grow
as the input gets larger?

Definition

Define 𝑇worst(𝑛) to be the most time taken by the
algorithm on any input of size 𝑛.

The asymptotic growth of 𝑇worst(𝑛) is the algo-
rithm’s worst case time complexity.

Worst Case

▶ In the worst case, linear_search iterates
through the entire array.

▶ The worst case time complexity is Θ(𝑛).

Faux Pas

▶ Asymptotic time complexity is not a complete
measure of efficiency.

▶ Θ(𝑛) is not always better than Θ(𝑛2).

▶ Why?

Faux Pas

▶ Why? Asymptotic notation “hides the constants”.

▶ 𝑇1(𝑛) = 1,000,000𝑛 = Θ(𝑛)

▶ 𝑇2(𝑛) = 0.00001𝑛2 = Θ(𝑛2)

▶ But 𝑇1(𝑛) is worse for all but really large 𝑛.

Main Idea

Asymptotic time complexity is not the only way to
measure efficiency, and it can be misleading.

Sometimes even a Θ(2𝑛) algorithm is better than a
Θ(𝑛) algorithm, if the data size is small.

Lecture 1 | Part 3

Arrays and Linked Lists

Memory

▶ To access a value, we must know its address.

Sequences

▶ How do we store an ordered sequence?
▶ e.g.: 55, 22, 12, 66, 60

▶ Array? Linked list?

Arrays

▶ Store elements contiguously.
▶ e.g.: 55, 22, 12, 66, 60

▶ NumPy arrays are... arrays.

Allocation

▶ Memory is shared resource.

▶ A chunk of memory of fixed size has to be
reserved (allocated) for the array.

▶ The size has to be known beforehand.

Arrays

▶ To access an element, we need its address.

▶ Key: Addresses are easily calculated.
▶ For 𝑘th element: address of first + (𝑘 × 64 bits)

▶ Therefore, arrays support Θ(1)-time access.

Downsides of Arrays

▶ Homogeneous; every element must be same size.

▶ To resize the array, a totally new chunk of
memory has to be found; old values copied
over1.

1In worst case: see realloc

Array Time Complexities

▶ Retrieve 𝑘th element: Θ(1) (good).

▶ Append element at end: Θ(𝑛) (bad)2.

▶ Insert/remove in middle: Θ(𝑛) (bad).

▶ Allocation: Θ(𝑛) if initialized,3 else Θ(1)

2At least on average. See: realloc
3On Linux this is done lazily, as can be seen by timing np.zeros

Aside: np.append

»> arr = np.array([1, 2, 3])
»> np.append(arr, 4) # takes Theta(n) time!
array([1, 2, 3, 4])

Aside: np.append

results = np.array([])
for i in np.arange(100):

result = run_simulation()
results = np.append(results, result)

Aside: np.append

▶ This was bad code!

▶ We allocate/copy a quadratic number of
elements:

1⏟
1st iter

+ 2⏟
2nd iter

+ 3⏟
3rd iter

+…+ 100⏟
last iter

= 100 × 1012 = 5050

Aside: np.append

▶ Better: pre-allocate.

results = np.empty(100)
for i in np.arange(100):

results[i] = run_simulation()

(Doubly) Linked Lists
▶ Scatter elements throughout memory.
▶ For each, store address of next/previous.

Linked Lists

▶ Each element has an address.

▶ Keep track of the address of first/last elements.

▶ Have to find address of middle elements by
looping.

Linked List Time Complexities

▶ Retrieve 𝑘th element:
▶ Θ(𝑘) if you don’t know address (bad)4
▶ Θ(1) if you do

▶ Append/pop element at start/end: Θ(1) (good).
▶ Insert/remove 𝑘th element:

▶ Θ(𝑘) if you don’t know address (bad)
▶ Θ(1) if you do

▶ Allocation not needed! (good)

4assumes search starts from beginning

Tradeoffs

▶ Arrays are better for numerical algorithms.
▶ Arrays have good cache performance.

▶ Linked lists are better for stacks and queues.

Main Idea

Different data structures optimize for different op-
erations.

