DSC /70

DATA STRUCTURES § ALLORITHMS

Lecture 2 | Part1

More about Memory

1/37

Is appending an array really so slow?

malloc() vs. realloc()

| W&{\zzuew o

2/37

Is appending an array really so slow?
If realloc doesn’t copy: O(1).
If realloc copies: O(n).
Assume p is probability that realloc copies.

Expected time is still' O(n).

'If p doesn’t depend on n.

3/37

How is empty memory found?

Basically: a linked list.

<.

A el

-

~

—
|
=

4/37

DSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 2 Part?2

Dynamic Arrays

5/37

Motivation
Can we have the best of both worlds?
O(1) time access like an array.
O(1) time append like a linked list.

Yes! (sort of)

6/37

The Idea

Allocate memory for an underlying array.
say, 512 elements
This is the physical size.

To append element, insert into first unused slot.
Number of elements used is the logical size.
O(1) time.

-

NIRRT

2

7137

The Idea

We'll eventually run out of unused slots.

Fix: allocate a new underlying array whose
physical size is y times as large.

y is the growth factor.

Commonly, y = 2; i.e., double its size.

Takes O(R) time, where k is current size.

8/37

ﬂf‘”“?ﬁ}
Example

W 1T w4234 5]] |

>>>
>>>
>>>
>>>
>>>
>>>

arr

arr.
arr.
.append(3)

. d(z) .
arr.appen @(Vl) -\'\M

arr
arr

= DynamicArray(initial_physical_size=4)

append(1) @0) oach

append(2)

append(5) £&Z—

9/37

(notebook)

10/37

DSC /70

DATA STRUCTURES § ALLoRITHMS
Lecture 2 Part3

Amortized Analysis

1/37

Analysis
Appending takes ©(1) time usually...

...but takes ©(R) time when we run out of slots.
Where R is current size of sequence.

12/37

The Key

Resizing is expensive, but rare.

If y = 2, each new resize is twice as expensive, but
happens half as often.

Thus, the cost per append is small.

Amortize the cost over all previous appends.

13/37

Amortized Time Complexity

The amortized time for an append is:

total time for n appends
Tamort(n) = n

We'll see that T .(n) = ©(1).

14 /37

Amortized Analysis

total time for n appends

total time for non-growing appends

+

total time for growing appends

15/37

Counting Growing Appends

Want to calculate time taken by growing
appends.

First: how many appends caused a resize?
B: initial physical size
y: growth factor

16 /37

Counting Growing Appends
Suppose initial physical sizeis B =512,and y = 2

Resizes occur on append #:

512,1024,2048, 4096, ...

In general, resizes occur on append #:

BY°, BY', BY?, BY?, ..

17/37

Counting Growing Appends
Zoqg 512 - 2%

In a sequence of n appends, how many caused
the physical size to grow?

Simplification: Assume n is such that nth append
caused a resize. Then, for some x €{0, 1, 2,...}:

X Nn-= 5'?— 1
n =
b 1024 Z
2018 2

If x = 0 there was 1 resize; if x = 1 there were 2;
etc.

18/37

Counting Growing Appends
@- 512

n Z"/Z
B e A0

Solving for x:
x = log

Check: without assumption, x = [logy %J

Number of resizes is [logy %J +1

19/37

Counting Growing Appends

Number of resizes is llog, %J +1

Check withy =2, B =512, n = 400

Correct # of resizes: 0

Check withy =2,B=512,n=1100
Correct # of resizes: 2
2.05 = lo\

eg

20/37

e-> ¥k
Time of Growing Appends

How much time was taken across all appends
that caused resizes?

Assumption: resizing an array with physical size

k takes time ck = O(R).
c is a constant that depends ony.

21/37

Time of Growing Appends ’;,gz
Time for first resize: cB. gz= 9\Z
Time for second resize: cyp. 1024
Time for third resize: cy?B. 2019
Time for jth resize: cy/™'B.

This is a geometric progression.

22/37

Time of Growing Appends
Time for jth resize: cy/™'B.
Suppose there are r resizes.

Total time:

23/37

Recall: Geometric Sum

From some class you've taken:

N N+1
00 1-Xx

Example:

1-2°

=31
1-2

4
1+2+4+8+16=zzp=
W,Z p=0

24 (37

Time of Growing Appends NH

_ 76
Total time:
r-] 1-v Nzr-|
Y
B> v =cB L
j=0 1 - y ?’é

zs%

25/37

Time of Growing Appends

Remember: in n appends there arer = [logy %J + 1
resizes.

Total time:

26 /37

Amortized Analysis

total time for n appends

total time for non-growing appends

+

O(n) « total time for growing appends

27137

Time of Non-Growing Appends

In a sequence of n appends, how many are
non-growing?

n- ([logy %J + 1) = 0(n)

Time for one such append: ©(1).

Total time: ©(n) x ©(1) = ©(n).

28/37

Amortized Analysis

total time for n appends

O(n) « total time for non-growing appends

O(n) « total time for growing appends

29/37

Amortized Time Complexity

The amortized time for an append is:

_ total time for n appends

Tamort(n) - n

O(n)

n

- 0(1)

30/37

Dynamic Array Time Complexities

Retrieve kth element: ©(1)

Append/pop element
O(1) best case
0(n) worst case (where n = current size)
O(1) amortized

|z 2

—

Insert/remove in middle: O(k) K= n-v
May or may not need resize, still O(n)!

—
—_— — —

DSC /70

DATA STRUCTURES § ALLoRITHMS
Lecture 2 Part 4

Practicalities

32/37

Advantages
Great cache performance (it's an array).
Fast access.

Don’t need to know size in advance of allocation.

33/37

Downsides
Wasted memory.

Expensive deletion in middle.

34 /37

Implementations
Python: list
C++: std: :vector

Java: ArraylList

35/37

Why do we need np.array? Python’s list is a dy-
namic array, isn't that better?

36/37

In defense of np.array

. 2 %5
Memory savings are one reason. L, 2\

Bigger reason: using Python’s list to store
numbers does not have good cache performance.

HEEEENANEEEEEEEEEEEE

37/37

