
Lecture 3 | Part 1

Abstract Data Types



Python’s list

▶ You can go a long time without ever knowing
how list is implemented.

▶ But you knew its interface.
▶ supports .append, random access, is ordered, etc.



Abstract vs. Concrete

▶ An abstract data type (ADT) is a formal
description of a type’s interface.

▶ A data structure is a concrete strategy for
implementing an abstract data type.
▶ Describes how data is stored in memory.
▶ How to access the data.



Example: Stacks

▶ A stack is an ADT which supports two operations:
▶ push: put a new object on to the “top”
▶ pop: remove and return item at the “top”

▶ Most often implemented using linked lists.

▶ But can also be implement with (dynamic) arrays.



Main Idea

A given abstract data type can be implemented in
several ways, but some data structures are more
natural choices than others.



Main Idea

The data structure (not the abstract data type) de-
termines the time complexity of operations.



Building Blocks

▶ Data structures are used to implement ADTs.

▶ But they are also used to implement more
advanced data structures.
▶ Example: arrays used to implement dynamic arrays.

▶ Arrays, linked lists are basic building blocks.



Lecture 3 | Part 2

Priority Queues



Priority Queues

▶ A priority queue is an abstract data type
representing a collection.

▶ Each element has a priority.

▶ Supports operations1:
▶ .pop_highest_priority()
▶ .insert(value, priority)
▶ .is_empty()

1and possibly more, like .increase_priority



Example

»> er = PriorityQueue()
»> er.insert('flu', priority=1)
»> er.insert('heart attack', priority=20)
»> er.insert('broken hand', priority=10)
»> er.pop_highest_priority()
'heart attack'
»> er.pop_highest_priority()
'broken hand'



Applications

▶ Scheduling.

▶ Simulations of future events.

▶ Useful in algorithms.
▶ Example: Prim’s MST algorithm



Array Implementation

▶ We can implement a priority queue with a
(dynamic) array.

▶ .insert(k, p)
▶ append (value, priority) pair: Θ(1) time

▶ .pop_highest_priority()
▶ find entry with highest priority: Θ(𝑛) time
▶ remove it: 𝑂(𝑛) time



Array Implementation (Variant)

▶ Alternatively, maintain dynamic array in sorted
order of priority.

▶ .insert(k, p)
▶ find place in sorted order: Θ(log 𝑛) time worst case
▶ actually insert: Θ(𝑛) time worst case

▶ .pop_highest_priority()
▶ remove/return last entry: Θ(1) time



Main Idea

If we made no insertions/deletions, a sorted array
would be great. But we want a data structure with
quick remove/return even after being modified.



Lecture 3 | Part 3

Binary Heaps



Binary Heaps

▶ A binary heap is a binary tree data structure
often used to implement priority queues.



Binary Trees

▶ Each node has at most two children (left, right).



Example



Example



Complete Binary Trees

▶ A binary tree is complete if every level is filled,
except for possibly the last (which fills from left
to right).



Node Height
▶ The height of node in a tree is the largest
number of edges along any path to a leaf.

▶ The height of a tree is the height of the root.



Complete Tree Height

▶ The height of a complete binary tree with 𝑛
nodes is Θ(log 𝑛).



Binary Heap Properties

▶ A binary max heap2 is a binary tree with three
additional properties:
1. Each node has a key.
2. Shape: the tree is complete.
3. Max-Heap: the key of a node is ≥ the key of each of
its children.

2There’s also a min heap, of course.



Example

▶ This is a binary max-heap.

80

53

35

10 17

30

15 29

40

37

5

31



Example

▶ This is not a binary max-heap.

80

53

35

50 17

30

15 29

40

37

18

31



Representation

▶ One representation: nodes are objects with
pointers to children.

▶ But due to completeness property, we can store
a binary heap in a (dynamic) array.



Array Representation

80

53

35

10 17

30

15 29

40

37

5

31

▶ .left_child(i)

▶ .right_child(i)

▶ .parent(i)



Operations

▶ .max()
▶ Return (but do not remove) the max key

▶ .increase_key(i, new_key)
▶ Increase key of node 𝑖, maintaining heap

▶ .insert(key)
▶ Insert new node, maintaining heap

▶ .pop_max()
▶ Remove max-key node, return key



.max

80

53

35

10 17

30

15 29

40

37

5

31

80
0

53
1

40
2

35
3

30
4

37
5

31
6

10
7

17
8

15
9

29
10

5
11



.max

class MaxHeap:

def __init__(self, keys=None):
if keys is None:

keys = []
self.keys = keys

def max(self):
return self.keys[0]



.max

▶ Takes Θ(1) time.



.increase_key

.increase_key(9, key=60)

80

53

35

10 17

30

15 29

40

37

5

31

80
0

53
1

40
2

35
3

30
4

37
5

31
6

10
7

17
8

15
9

29
10

5
11



.increase_key

def increase_key(self, ix, key):
if key < self.keys[ix]:

raise ValueError('New key is smaller.')

self.keys[ix] = key
while (

parent(ix) >= 0
and
self.keys[parent(ix)] < key

):
self._swap(ix, parent(ix))
ix = parent(ix)



.increase_key

▶ Takes 𝑂(log 𝑛) time.



.insert

.insert(key=60)

80

53

35

10 17

30

15 29

40

37

5

31

80
0

53
1

40
2

35
3

30
4

37
5

31
6

10
7

17
8

15
9

29
10

5
11



.insert

def insert(self, key):
self.keys.append(key)
self.increase_key(

len(self.keys)-1, key
)



.insert

▶ Takes 𝑂(log 𝑛) time (amortized)3.

3If we use a static array the worst case is Θ(log 𝑛)



.pop_max_key

80

53

35

10 17

30

15 29

40

37

5

31

80
0

53
1

40
2

35
3

30
4

37
5

31
6

10
7

17
8

15
9

29
10

5
11



.pop_max_key

def pop_max_key(self):
if len(self.keys) == 0:

raise IndexError('Heap is empty.')
highest = self.max()
self.keys[0] = self.keys[-1]
self.keys.pop()
self._push_down(0)
return highest



._push_down(i)

▶ Assume that left and right subtrees of node 𝑖 are
max heaps, but key of 𝑖 is possibly too small.

▶ Push it down until heap property satisfied.
▶ Recursively swap with largest of left and right child.



._push_down()
def _push_down(self, i):

left = left_child(i)
right = right_child(i)
if (

left < len(self.keys)
and
self.keys[left] > self.keys[i]

):
largest = left

else:
largest = i

if (
right < len(self.keys)
and
self.keys[right] > self.keys[largest]

):
largest = right

if largest != i:
self._swap(i, largest)
self._push_down(largest)



.pop_max_key

▶ ._push_down(i) takes 𝑂(ℎ) where ℎ is 𝑖’s height

▶ Since ℎ = 𝑂(log 𝑛), .pop_max_key takes 𝑂(log 𝑛)
time.



Summary

For a binary heap4:

.max Θ(1)

.increase_key 𝑂(log 𝑛)

.insert 𝑂(log 𝑛)

.pop_max_key 𝑂(ℎ) = 𝑂(log 𝑛)

4There are other heap data structures. Fibonacci heaps have Θ(1) insert
and increase key, but slower for small 𝑛.



Implementing Priority Queues

▶ Can use max heaps to implement priority queues.

▶ But a priority queue has values and keys.

pq.insert('heart attack', priority=20)



Trick

▶ Heap keys need not be integers.

▶ Need only be comparable.

▶ Can store key and value with a tuple.



Tuple Comparison

▶ In Python, tuple comparison is lexicographical.
▶ Compare first entry; if tie, compare second, etc.

»> (10, 'test') > (5, 'zzz')
True
»> (10, 'test') > (10, 'zzz')
False



Trick

▶ Use 2-tuples: priority in 1st spot, value in 2nd.



class PriorityQueue:

def __init__(self):
self._heap = MaxHeap()

def insert(self, value, priority):
self._heap.insert((priority, value))

def pop_highest_priority(self):
return self._heap.pop_max()

def max(self):
return self._heap.max()

def is_empty(self):
return not bool(self._heap.keys)



Lecture 3 | Part 4

Example: Online Median



Online Median

▶ Given: a stream of numbers, one at a time.

▶ Compute: the median of all numbers seen so far.

▶ Design: a data structure with the following
operations:
▶ .insert(number): in Θ(log 𝑛) time
▶ .median(): in Θ(1) time



Review

▶ Given an array, we can compute the median in:
▶ Θ(𝑛 log 𝑛) time by sorting
▶ Θ(𝑛) (expected) time with quickselect

▶ But modifying the array and repeating is costly.



Idea

▶ Median is the:
▶ maximum of the smallest ≈ 𝑛/2 numbers.
▶ minimum of the largest ≈ 𝑛/2 numbers.

▶ Keep a max heap for the smallest half.

▶ Keep a min heap for the largest half.

▶ May become unbalanced.
▶ Move elements between them to balance.



Example

▶ Given 5, 1, 9, 8, 10, 7, 3, 6, 2, 4



Analysis
▶ Given a stream of 𝑛 numbers, compute median, insert
another, compute median

quickselect (dyn. arr.)
▶ Θ(𝑛) time for 𝑛 appends
▶ Θ(𝑛) time for quickselect
▶ Θ(1) time for 1 append
▶ Θ(𝑛) time for quickselect

now (double heap)
▶ Θ(𝑛 log 𝑛) time for 𝑛 inserts
▶ Θ(1) time for median
▶ Θ(log 𝑛) time for 1 insert
▶ Θ(1) time for quickselect


