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Dynamic Sets and Hashing
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Dynamic Set
One of the most useful abstract data types.

A collection of unique keys which supports:
insertion and deletion
membership queries: x in set

Very similar to dictionary.
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Implementation #1
Store n elements in a dynamic array.
Initial cost: ©(n).
Query: linear search, O(n).

Insertion: ©(1) amortized.
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. %
Implementation#2 % %' !

Store n elements in a sorted dynamic array.
Initial cost: O(n logn). / 72 5 B

Query: binary search, ©(log n).

Insertion: O(n)
Must maintain sorted order, involves copies.
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Better Implementation
Store n elements in a hash table.
Initial cost: O(n)'.

Query: 0(1).

Insertion: ©(1).

TAll time complexities are average case.
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Today’s Lecture
We'll review hashing.
See where hashing is not the right thing to do.
Review binary search trees as an alternative.

Next lecture: introduce treaps.
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Hashing "

One of the most important ideas in CS.

Tons of uses:
Verifying message integrity.
Fast queries on a large data set.
Identify if file has changed in version control.

7178



Hash Function

A hash function takes a (large) object and
returns a (smaller) “fingerprint” of that object.

8/78



How?

Looking at certain bits, combining them in ways
that look random.
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Hash Function Properties
Hashing same thing twice returns the same hash.

Unlikely that different things have same
fingerprint.
But not impossible!
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Example

MD5 is a cryptographic hash function.
Hard to “reverse engineer” input from hash.

Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

Used to “fingerprint” whole files.
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Example

> echo "My name is Justin” | mds5
a741d8524a853cf83ca2i1eabf8cea190
> echo "My name is Justin” | mds5
a741d8524a853cf83ca21eabf8cea196
> echo "My name is Justin!” | mds
fi11eed2391bbdeasa2355397ce89fafd
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Another Use
Want to place images into 100 bins.
How do we decide which bin an image goes into?

Hash function!
Takes in an image.
Outputs a number in {1, 2, ..., 100}.
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Hashing for Data Scientists

Don’t need to know much about how hash
function works.

But should know how they are used.
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Hash Tables

Create an array with pointers to m linked lists.
Usually m =~ number of things you'll be storing.

Create hash function to turn input into a number
in{0,1,..,m-1}
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Example

hash('hello"')
hash('data') =

== 3
hash('science')
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Collisions
The universe is the set of all possible inputs.
This is usually much larger than m (even infinite).
Not possible to assign each input to a unique bin.

If hash(a) == hash(b), there is a collision.
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Chaining

Collisions stored in same bin, in linked list.
Query: Hash to find bin, then linear search.

qud'
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The Idea

A good hash function will utilize all bins evenly.

Looks like uniform random distribution.

If m = n, then only a few elements in each bin.

As we add more elements, we need to add bins.
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Average Case
n elements in bin.
m bins.
Assume elements placed randomly in bins?.

Expected bin size: n/m.

20f course, they are placed deterministically.
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Analysis
Query: “/m
0(1) to find bin
O(n/m) for linear search.
Total: ©(1 + n/m).
We usually guarantee m = O(n), = 0(1).

N
N2

Insertion: ©(1).
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Worst Case

Everything hashed to same bin.
Really unlikely!
Adversarial attack?

Query:
O(1) to find bin
O(n) for linear search.
Total: ©(n).
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Worst Case Insertion

We need to ensure that m < c-n.
Otherwise, too many collisions.

If we add a bunch of elements, we’ll need to
increase m.

Increasing m means allocating a new array,
O(m) = ©(n) time.
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Main Idea

Hash tables support constant (expected) time in-
sertion and membership queries.

2478



Hashing Downsides
Hashing is like magic. Constant time access?!
Comes at a cost: data now scattered “randomly”.

Examples:
find max/min in hash table.
range query: all strings between 'a' and 'c'

Must do a full loop over table!
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Example

hash('apple') ==
hash('bill nye')
hash('cassowary')

3
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Binary Search Trees
An alternative way to implement dynamic sets.
Slightly slower insertion, query.

But preserves data in sorted order.
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Binary Search Tree

A binary search tree (BST) is a binary tree that
satisfies the following for any node x:

if y isin x’s left subtree: x

’

y.key < x.key

if y isin x's right subtree:

y.key 2 x.key
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Example

This is a BST.




Example

This is not a BST.




‘ Is this is a BST? \




Memory Representation

Each element stored as a node at an arbitrary
address in memory.

Each node has a key?® and pointers to left child
right child, and parent nodes (if they exist).

Aw@%ﬁﬁm

3we'll assume keys are unique, though this can be relaxed.
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In Python

class Node:
def __init__(self, key, parent=None):

self.key = key
self.parent = parent
self.left = None
self.right = None

class BinarySearchTree:
def __init__(self, root: Node):

self.root = root

34/78



In Python

root = Node(6)

n1 = Node(12, parent=root)
root.left = n1

n2 = Node(33, parent=root)
root.right = n2

tree = BinarySearchTree(root)
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Operations on BSTs

We will want to:
traverse the nodes in sorted order by key
query a key (is it in the tree?)
insert a new key
delete an existing key
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Inorder Traversal




def inorder(node):
if node is not None:
inorder(node.left)
print(node.key)
inorder(node.right)
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Inorder Traversal

Prints nodes in sorted order.
Visits each node once, ©(1) time in the call.

Takes O(n) time.
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Queries
Given: a BST and a target, t.

Return: True or False, is the target in the
collection?

40/78



Queries

Is 36 in the tree? 657 237




Queries
Start walking from root.

If current node is:
equal to target, return True;
too large (> target), follow left edge;
too small (< target), follow right edge;
None, return False
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Queries, in Python

def query(self, target):
current_node = self.root
while current_node is not None:
if current_node.key == target:
return current_node
elif current_node.key < target:
current_node = current_node.right
else:
current_node = current_node.left
return None
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Queries, Analyzed
Best case: O(1).

Worst case: ©(h), where h is height of tree.
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Insertion
Given: a BST and a new key, R.
Modify: the BST, inserting k.

Must maintain the BST properties.
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Insertion

Insert 23 into the BST.




def insert(self, new_key):
# assume new_key is unique
current_node = self.root
parent = None

while current_node is not None:
parent = current_node
if current_node.key == new_key:
raise ValueError(f'Duplicate key "{new_key}” not allowed.")
if current_node.key < new_key:
current_node = current_node.right
elif current_node.key > new_key:
current_node = current_node.left

new_node = Node(key=new_key, parent=parent)
if parent is None:
self.root = new_node
elif parent.key < new_key:
parent.right = new_node
else:
parent.left = new_node
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Insertion, Analyzed

Worst case: ©(h), where h is height of tree.
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Deletion
Given: a key in the BST.

Modify: the BST, deleting the key.

Must maintain the BST properties.

This is a little trickier.
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Deletion: Case 1 (Easy)

Delete 36 from the BST.




Deletion: Case 2 (Tricky)

Delete 42 from the BST.




Deletion
If node has no children (leaf), easy.
Otherwise, a little trickier.

Idea: rotate* node to bottom, preserving BST.
When it is a leaf, delete.

“Most books take a different approach with the same time complexity.
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(Right) Rotation
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(Left) Rotation
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Left rotate and right rotate preserve the BST prop-
erty.

55/78



def _right_rotate(self, x):

u = x.left
B = u.right
C = x.right
p = X.parent
x.left = B

if B is not None: B.parent = X

u.right = x
X.parent = u

u.parent = p

if p is None:
self.root = u
elif p.left is x:
p.left = u
else:
p.right = u
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Deletion Analyzed
Each rotate takes ©(1) time.
O(h) rotations until node becomes leaf.

So O(h) time in the worst case.
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Main Idea

Insertion, deletion, and querying all take ©(h) time
in the worst case, where h is the height of the tree.
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Binary Tree Height

In case of very balanced tree, h grows
logarithmically with n.
h = ©(logn)
Query, insertion, deletion take worst case ©(log n)
time.
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Binary Tree Height

In the case of very unbalanced tree, h grows

linearly with n.
h= o O)

Query, insertion, deletion take worst case ©(n) time.
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Unbalanced Trees

Occurs if we insert items in (close to) sorted or
reverse sorted order.

This is a common situation.

A
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Example

Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).
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Time Complexities

query O(h)
insertion O(h)

Where h is height, and h = Q(logn) and h = O(n).

64 /78



Time Complexities (Balanced)

query O(logn)
insertion O(logn)

Where h is height, and h = Q(log n) and h = G).
Ol B
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Worst Case Time Complexities
(Unbalanced)

query O(n)
insertion ©(n)

The worst case is bad.
Worse than using a sorted array!

The worst case is not rare.
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Main Idea

The operations take linear time in the worst case
unless we can somehow ensure that the tree is bal-
anced.
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Why use a BST?

Even assuming a balanced tree, BSTs seem worse
than hash tables.

BST  Hash Table?

query O(logn) o(1)
insertion O(logn) o(1)

So when are BSTs better?

>Average case times reported.
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Max/Min

Consider finding the maximum element.
Hash tables: ©(n); must loop through all bins.

BST: ©(h), which is O(log n) if balanced
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Keeping track of the maximum can be done effi-
ciently in any stream of numbers, provided that
there are only insertions. But if deletions are al-
lowed, BSTs can find the next maximum efficiently.
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How well do heaps work for this problem? Are they
better? In what sense?
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Range Queries
Given: a collection and an interval [a, b]
Retrieve: all elements in the interval.

Example:
collection: 55, 12, 5, 43, 20, 90, 65, 99, 60, 70
interval: [1, 30]
result: 5, 12, 20
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How quickly can this be performed with a hash ta-
ble?
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Range Queries in BST

Definitions:
The ceiling of x in a BST is the smallest key > x.

The successor of node u is the smallest node > #£.
u

Strategy:
Find the floor of a
Repeatedly find the successor until > b
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Range Queries

ceiling and successor both take O(h) = O(logn) in
balanced trees

If the are k elements in the range, calling
successor kR times gives complexity O(k logn).
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