DSC /70

DATA STRUCTURES § ALLoRITHMS

Dynamic Sets and Hashing

1/78

Dynamic Set
One of the most useful abstract data types.

A collection of unique keys which supports:
insertion and deletion
membership queries: x in set

Very similar to dictionary.

2/78

Implementation #1
Store n elements in a dynamic array.
Initial cost: ©(n).
Query: linear search, O(n).

Insertion: ©(1) amortized.

3/78

. %
Implementation#2 % %' !

Store n elements in a sorted dynamic array.
Initial cost: O(n logn). / 72 5 B

Query: binary search, ©(log n).

Insertion: O(n)
Must maintain sorted order, involves copies.

4/78

Better Implementation
Store n elements in a hash table.
Initial cost: O(n)'.

Query: 0(1).

Insertion: ©(1).

TAll time complexities are average case.
5/78

Today’s Lecture
We'll review hashing.
See where hashing is not the right thing to do.
Review binary search trees as an alternative.

Next lecture: introduce treaps.

6/78

5

Hashing "

One of the most important ideas in CS.

Tons of uses:
Verifying message integrity.
Fast queries on a large data set.
Identify if file has changed in version control.

7178

Hash Function

A hash function takes a (large) object and
returns a (smaller) “fingerprint” of that object.

8/78

How?

Looking at certain bits, combining them in ways
that look random.

9/78

Hash Function Properties
Hashing same thing twice returns the same hash.

Unlikely that different things have same
fingerprint.
But not impossible!

10/78

Example

MD5 is a cryptographic hash function.
Hard to “reverse engineer” input from hash.

Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

Used to “fingerprint” whole files.

1/78

Example

> echo "My name is Justin” | mds5
a741d8524a853cf83ca2i1eabf8cea190
> echo "My name is Justin” | mds5
a741d8524a853cf83ca21eabf8cea196
> echo "My name is Justin!” | mds
fi11eed2391bbdeasa2355397ce89fafd

12/78

Another Use
Want to place images into 100 bins.
How do we decide which bin an image goes into?

Hash function!
Takes in an image.
Outputs a number in {1, 2, ..., 100}.

13/78

Hashing for Data Scientists

Don’t need to know much about how hash
function works.

But should know how they are used.

14178

Hash Tables

Create an array with pointers to m linked lists.
Usually m =~ number of things you'll be storing.

Create hash function to turn input into a number
in{0,1,..,m-1}

15/78

Example

hash('hello"')
hash('data') =

== 3
hash('science')

(0]

MM wﬂ 9(,(0/\(/'

0 1 2 4 T m-1

16/78

Collisions
The universe is the set of all possible inputs.
This is usually much larger than m (even infinite).
Not possible to assign each input to a unique bin.

If hash(a) == hash(b), there is a collision.

17/78

Chaining

Collisions stored in same bin, in linked list.
Query: Hash to find bin, then linear search.

qud'
()
e

0 1 2 3 T om-1

18/78

The Idea

A good hash function will utilize all bins evenly.

Looks like uniform random distribution.

If m = n, then only a few elements in each bin.

As we add more elements, we need to add bins.

19/78

Average Case
n elements in bin.
m bins.
Assume elements placed randomly in bins?.

Expected bin size: n/m.

20f course, they are placed deterministically.
20/78

Analysis
Query: “/m
0(1) to find bin
O(n/m) for linear search.
Total: ©(1 + n/m).
We usually guarantee m = O(n), = 0(1).

N
N2

Insertion: ©(1).

21/78

Worst Case

Everything hashed to same bin.
Really unlikely!
Adversarial attack?

Query:
O(1) to find bin
O(n) for linear search.
Total: ©(n).

22/78

Worst Case Insertion

We need to ensure that m < c-n.
Otherwise, too many collisions.

If we add a bunch of elements, we’ll need to
increase m.

Increasing m means allocating a new array,
O(m) = ©(n) time.

23/78

Main Idea

Hash tables support constant (expected) time in-
sertion and membership queries.

2478

Hashing Downsides
Hashing is like magic. Constant time access?!
Comes at a cost: data now scattered “randomly”.

Examples:
find max/min in hash table.
range query: all strings between 'a' and 'c'

Must do a full loop over table!

25/78

Example

hash('apple') ==
hash('bill nye')
hash('cassowary')

3

= 4

R A |

0 1 2 3 4 m -1

26/78

DSC /70

DATA STRUCTURES § ALLoRITHMS

Binary Search Trees

27178

Binary Search Trees
An alternative way to implement dynamic sets.
Slightly slower insertion, query.

But preserves data in sorted order.

28/78

Binary Search Tree

A binary search tree (BST) is a binary tree that
satisfies the following for any node x:

if y isin x’s left subtree: x

’

y.key < x.key

if y isin x's right subtree:

y.key 2 x.key

29/78

Example

This is a BST.

Example

This is not a BST.

‘ Is this is a BST? \

Memory Representation

Each element stored as a node at an arbitrary
address in memory.

Each node has a key?® and pointers to left child
right child, and parent nodes (if they exist).

Aw@%ﬁﬁm

3we'll assume keys are unique, though this can be relaxed.

33/78

In Python

class Node:
def __init__(self, key, parent=None):

self.key = key
self.parent = parent
self.left = None
self.right = None

class BinarySearchTree:
def __init__(self, root: Node):

self.root = root

34/78

In Python

root = Node(6)

n1 = Node(12, parent=root)
root.left = n1

n2 = Node(33, parent=root)
root.right = n2

tree = BinarySearchTree(root)

35/78

Operations on BSTs

We will want to:
traverse the nodes in sorted order by key
query a key (is it in the tree?)
insert a new key
delete an existing key

36/78

Inorder Traversal

def inorder(node):
if node is not None:
inorder(node.left)
print(node.key)
inorder(node.right)

38/78

Inorder Traversal

Prints nodes in sorted order.
Visits each node once, ©(1) time in the call.

Takes O(n) time.

39/78

Queries
Given: a BST and a target, t.

Return: True or False, is the target in the
collection?

40/78

Queries

Is 36 in the tree? 657 237

Queries
Start walking from root.

If current node is:
equal to target, return True;
too large (> target), follow left edge;
too small (< target), follow right edge;
None, return False

42/78

Queries, in Python

def query(self, target):
current_node = self.root
while current_node is not None:
if current_node.key == target:
return current_node
elif current_node.key < target:
current_node = current_node.right
else:
current_node = current_node.left
return None

43/78

Queries, Analyzed
Best case: O(1).

Worst case: ©(h), where h is height of tree.

44 (78

Insertion
Given: a BST and a new key, R.
Modify: the BST, inserting k.

Must maintain the BST properties.

45/78

Insertion

Insert 23 into the BST.

def insert(self, new_key):
assume new_key is unique
current_node = self.root
parent = None

while current_node is not None:
parent = current_node
if current_node.key == new_key:
raise ValueError(f'Duplicate key "{new_key}” not allowed.")
if current_node.key < new_key:
current_node = current_node.right
elif current_node.key > new_key:
current_node = current_node.left

new_node = Node(key=new_key, parent=parent)
if parent is None:
self.root = new_node
elif parent.key < new_key:
parent.right = new_node
else:
parent.left = new_node

47178

Insertion, Analyzed

Worst case: ©(h), where h is height of tree.

4878

Deletion
Given: a key in the BST.

Modify: the BST, deleting the key.

Must maintain the BST properties.

This is a little trickier.

49/78

Deletion: Case 1 (Easy)

Delete 36 from the BST.

Deletion: Case 2 (Tricky)

Delete 42 from the BST.

Deletion
If node has no children (leaf), easy.
Otherwise, a little trickier.

Idea: rotate* node to bottom, preserving BST.
When it is a leaf, delete.

“Most books take a different approach with the same time complexity.
52/78

A%

P

(Right) Rotation

/a

(Left) Rotation

Q p7 ¥

pett

Left rotate and right rotate preserve the BST prop-
erty.

55/78

def _right_rotate(self, x):

u = x.left
B = u.right
C = x.right
p = X.parent
x.left = B

if B is not None: B.parent = X

u.right = x
X.parent = u

u.parent = p

if p is None:
self.root = u
elif p.left is x:
p.left = u
else:
p.right = u

56 /78

Deletion Analyzed
Each rotate takes ©(1) time.
O(h) rotations until node becomes leaf.

So O(h) time in the worst case.

57/78

Main Idea

Insertion, deletion, and querying all take ©(h) time
in the worst case, where h is the height of the tree.

58 /78

DSC /70

DATA STRUCTURES § ALLORITHMS

Balanced and Unbalanced BSTs

59/78

Binary Tree Height

In case of very balanced tree, h grows
logarithmically with n.
h = ©(logn)
Query, insertion, deletion take worst case ©(log n)
time.

60/78

Binary Tree Height

In the case of very unbalanced tree, h grows

linearly with n.
h= o O)

Query, insertion, deletion take worst case ©(n) time.

61/78

Unbalanced Trees

Occurs if we insert items in (close to) sorted or
reverse sorted order.

This is a common situation.

A

62/78

Example

Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

63/78

Time Complexities

query O(h)
insertion O(h)

Where h is height, and h = Q(logn) and h = O(n).

64 /78

Time Complexities (Balanced)

query O(logn)
insertion O(logn)

Where h is height, and h = Q(log n) and h = G).
Ol B

65/78

Worst Case Time Complexities
(Unbalanced)

query O(n)
insertion ©(n)

The worst case is bad.
Worse than using a sorted array!

The worst case is not rare.

66/78

Main Idea

The operations take linear time in the worst case
unless we can somehow ensure that the tree is bal-
anced.

67/78

DSC /70

DATA STRUCTURES § ALLoRITHMS

Range Queries, Max, and Min

68/78

Why use a BST?

Even assuming a balanced tree, BSTs seem worse
than hash tables.

BST Hash Table?

query O(logn) o(1)
insertion O(logn) o(1)

So when are BSTs better?

>Average case times reported.
69 /78

Max/Min

Consider finding the maximum element.
Hash tables: ©(n); must loop through all bins.

BST: ©(h), which is O(log n) if balanced

70 /78

Keeping track of the maximum can be done effi-
ciently in any stream of numbers, provided that
there are only insertions. But if deletions are al-
lowed, BSTs can find the next maximum efficiently.

72178

How well do heaps work for this problem? Are they
better? In what sense?

73/78

Range Queries
Given: a collection and an interval [a, b]
Retrieve: all elements in the interval.

Example:
collection: 55, 12, 5, 43, 20, 90, 65, 99, 60, 70
interval: [1, 30]
result: 5, 12, 20

7478

How quickly can this be performed with a hash ta-
ble?

75/78

Range Queries in BST

Definitions:
The ceiling of x in a BST is the smallest key > x.

The successor of node u is the smallest node > #£.
u

Strategy:
Find the floor of a
Repeatedly find the successor until > b

76 /78

Range Queries

ceiling and successor both take O(h) = O(logn) in
balanced trees

If the are k elements in the range, calling
successor kR times gives complexity O(k logn).

78 /78

