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Today'’s Lecture



Last Time

Time needed for BST operations is proportional
to height.

If tree is balanced, h = ©(log n)

If tree is unbalanced, h = O(n)



Today
How do we ensure that tree is balanced?
Approach 1: Complicated rules, red-black trees.
Approach 2: Randomization

We'll introduce treaps.
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Red-Black Trees



Self-Balancing BSTs

We wish to ensure that the tree does not become
unbalanced.

Idea: If tree becoming unbalanced, it will balance
itself.

Several strategies, including red-black trees and
AVL trees



Red-Black Trees

A red-black tree is a BST whose nodes are
colored red and black.

Leaf nodes are “nil”.

Must satisfy four additional properties:
The root node is black.
Every leaf node is black.
If a node is red, both child nodes are black.
For any node, all paths from the node to a leaf
contain the same number of black nodes.

vﬁl






Example

This not a red-black tree.
Violates last property

‘'
s
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If a red-black tree has n internal (non-nil) nodes,
then the height is at most 2 log(n + 1).




Proof Intuition’

All paths from root to a leaf are about the same
length (= h).

Therefore, the tree is close to balanced.

So height is proportional to logn

"Formal proof proceeds by induction.



Non-Modifying Operations

As a result, the non-modifying operations take
O(logn) time in red-black trees.

query
minimum/maximum
next smallest/largest

Proof: these take ©(h) time in any BST, and in a
red-black tree h = O(logn).



Insertion and Deletion

Standard BST .insert and .delete methods
preserve BST, but not red-black properties.

Insertion/deletion in a red-black tree is
considerably more complicated.

But both take ©(logn) time.



Implementing balanced trees is an exacting task and
as a result balanced tree algorithms are rarely imple-
mented except as part of a programming assignment
in a data structures class®.

Pugh, 1990

2For computer science majors.



Summary

For red-black trees, worst cases:
query O(logn)
minimum/maximum  ©(logn)
next largest/smallest ©(logn)
O(logn)

insertion

But they are tricky to implement.
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Randomization to the Rescue



Order Matters

The structure of a BST depends on insertion
order.



Example

Insert 1,2,3,4,5,6 into BST, in that order.

2N

N



Example

Insert 3, 5, 1, 2, 4, 6 into BST, in that order.

@%



The expected height of a BST built by inserting the
keys in random order is ©(log n).




Idea

To build a BST, take all n keys, shuffle them
randomly, then insert.

No need for Red-Black Trees, right?



Problem
Usually don't have all the keys right now.
This is a dynamic set, after all.

The keys come to us in a stream, can't specify
order.



Goal

Design a data structure that simulates random
insertion order without actually changing the
order.
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Treaps



Randomization

If insertions are in a random order, expected
depth of a BST is ©(logn).

But in online operation, we cannot randomize
insertion order.

Now: an elegant data structure simulating
random insertion order in online operation.



First: Recall Heaps 2

A max heap is a binary tree where: /
each node has a priority. @ @
if y is a child of node x, then

y.priority < x.priority



Example

This is a max heap:




Treaps

A treap is a binary tree in which each node has
both a key and a priority.

It is @ max heap w.r.t. its priorities.

It is a binary search tree w.rt. its keys.



Example

This is a treap:




Example

This is a treap:




Example

This is a treap:




BST Operations

Because a treap is a BST, querying, finding
max/min by key is done the same.

Insertion and deletion require care to preserve
heap property.



Insertion

Find place to insert node as usual.

While priority of new node is > than parent’s:
Left rotate new node if it is the right child.
Right rotate new node if it is the left child.

Rotate preserves BST, repeat until heap property
satisfied.



(Right) Rotation
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Example: Insertion

Insert key: 16, priority: 65.




Example: Insertion

Insert key: 16, priority: 65.




Example: Insertion

Insert key: 16, priority: 65.




Example: Insertion

Insert key: 16, priority: 65.




Deletion

While node is not a leaf:
Rotate it with child of highest priority.

Once it is a leaf, delete it.
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Treap Properties



Good Question

Is it always possible to build a treap?



Given any set of (key, priority) pairs, inserting them
one-by-one into a treap always results in a valid
treap (no matter the insertion order).




Proof Idea
Start with a treap (possibly empty).

Inserting new (key, priority) preserves treap:
BST: rotation preserves BST property
heap: initially violated, but rotation repeated until it
is satisfied



Given any set of (key, priority) pairs, if both keys
and priorities are unique, then the treap is unique.

Corollary: Given any set of (key, priority) pairs, if
both keys and priorities are unique, inserting them
one-by-one into a treap results in the same treap,
no matter the insertion order.




Example

Insert (3, 40), (1, 20), (10, 50), (6, 30), (5, 100), in that order

a
2/uo @

& @



Example

Insert (5, 100), (10, 50), (3, 40), (6, 30), (1, 20), in that order

2w @
(b (>



Proof Idea

Root node must be node w/ highest priority.

Root's left (right) child must have highest priority
among nodes with key < (>) root key.

Apply recursively.



Given any set of (key, priority) pairs, if both keys
and priorities are unique, then inserting them one-
by-one into a treap (in any order) results in the
same BST one would obtain by inserting into a BST
in decreasing order of priority.
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Randomized Binary Search Trees



Given any set of keys, if they are inserted into a
BST in random order, the result is (almost surely)
balanced. The expected height is ©(log n).




Given any set of (key, priority) pairs, if both keys
and priorities are unique, then inserting them one-
by-one into a treap (in any order) results in the
same BST one would obtain by inserting into a BST
in decreasing order of priority.




The Idea

When inserting a node into a treap, generate
priority randomly.

The resulting treap will be the same tree as a BST
built with nodes randomly ordered according to
these priorities.

It will almost surely be balanced.

This is called a randomized binary search tree>.

3Sometimes people call these treaps



Warning

Randomness does not mean that the result of,
for example, a query has some probability of
being incorrect.

BST operations on treaps are always, 100%
correct.

The structure is random.



g 7 ﬁ//%/é«ample

Inser 1, 2, 3, 4,5, 6 into a treap, generating priorities
randomly.

N\
u[\2
7\
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Time Complexities

For randomized BSTs, expected times:
query O(logn)
minimum/maximum  ©(log n)
next largest/smallest ©(logn)
insertion O(logn)

Worst case times are O(n), but very rare



Comparison to Red-Black Trees

When compared to red-black trees, randomized
BSTs are:

same in terms of expected time;
perhaps slightly slower in practice;
much easier to implement/modify.

Good trade-off for a data scientist!



Priority Hacks

Several interesting strategies for generating a
new node’s priority, beyond simply generating a
random number.



g
Idea #1: Hashing %

Instead of randomly generating a number, hash
the key to get priority.

Works, provided hash function looks random.

Careful! In python, hash(300) == 300



O

Idea #2: “Learning” 0<c7

Z
Idea: Frequently-queried items should be neard
top of tree.

When an item is queried, update its priority:

new priority = max(old priority,random number)
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Order Statistic Trees



Modifying BSTs

More than most other data structures, BSTs must
be modified to solve unique problems.

Red-black trees are a pain to modify.

Treaps/randomized BSTs are easy!



Order Statistics

Given n numbers, the kth order statistic is the
kRth smallest number in the collection.



Example

[99, 42, -77, -12, 101]
1st order statistic: - FF
2nd order statistic: - 1Z

4th order statistic: 99



Some special cases of order statistics go by differ-
ent names. Can you think of some?




Special Cases
Minimum: 1st order statistic.
Maximum: nth order statistic.
Median: [n/2]th order statistic”.

pth Percentile: [— nlth order statistic.

“What if n is even?



Computing Order Statistics

Quickselect finds any order statistic in linear
expected time.

This is efficient for a static set.

Inefficient if set is dynamic.



Goal

Create a dynamic set data structure that
supports fast computation of any order statistic.



Does the “two heaps” trick from before work?




BST Solution

For each node, keep attribute .size, containing
# of nodes in subtree rooted at current node

-\%
M *



Example: Insert/Delete




Challenge
S
changes when nodes are
mserted/deleted

We must modify the code for insertion/deletion

A pain with R-B tree; easy with treap!
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BSTs vs. Heaps



BSTs vs. Heaps
Seemingly similar.
Both are binary trees.

Similar time complexities.



Summary

Balanced BST Binary Heap

get minimum/maximum O(logn)’ o(1)
extract minimum/maximum O(logn) O(logn)
insertion O(logn) O(log(n))

>Can actually be optimized to ©(1)



BSTs

Comparison

Heaps
No cache locality Cache locality
Memory for pointers Use less memory
Maintains sorted order Costly to query
Used for order statistics, Used for max/min

queries



