DSC /70

DATA STRUCTURES § ALLORITHMS

Today'’s Lecture

Last Time

Time needed for BST operations is proportional
to height.

If tree is balanced, h = ©(log n)

If tree is unbalanced, h = O(n)

Today
How do we ensure that tree is balanced?
Approach 1: Complicated rules, red-black trees.
Approach 2: Randomization

We'll introduce treaps.

DSC /70

DATA STRUCTURES § ALLORITHMS

Red-Black Trees

Self-Balancing BSTs

We wish to ensure that the tree does not become
unbalanced.

Idea: If tree becoming unbalanced, it will balance
itself.

Several strategies, including red-black trees and
AVL trees

Red-Black Trees

A red-black tree is a BST whose nodes are
colored red and black.

Leaf nodes are “nil”.

Must satisfy four additional properties:
The root node is black.
Every leaf node is black.
If a node is red, both child nodes are black.
For any node, all paths from the node to a leaf
contain the same number of black nodes.

vﬁl

Example

This not a red-black tree.
Violates last property

‘'
s
Ef

If a red-black tree has n internal (non-nil) nodes,
then the height is at most 2 log(n + 1).

Proof Intuition’

All paths from root to a leaf are about the same
length (= h).

Therefore, the tree is close to balanced.

So height is proportional to logn

"Formal proof proceeds by induction.

Non-Modifying Operations

As a result, the non-modifying operations take
O(logn) time in red-black trees.

query
minimum/maximum
next smallest/largest

Proof: these take ©(h) time in any BST, and in a
red-black tree h = O(logn).

Insertion and Deletion

Standard BST .insert and .delete methods
preserve BST, but not red-black properties.

Insertion/deletion in a red-black tree is
considerably more complicated.

But both take ©(logn) time.

Implementing balanced trees is an exacting task and
as a result balanced tree algorithms are rarely imple-
mented except as part of a programming assignment
in a data structures class®.

Pugh, 1990

2For computer science majors.

Summary

For red-black trees, worst cases:
query O(logn)
minimum/maximum ©(logn)
next largest/smallest ©(logn)
O(logn)

insertion

But they are tricky to implement.

DSC /70

DATA STRUCTURES % ALLoRITHMS

Randomization to the Rescue

Order Matters

The structure of a BST depends on insertion
order.

Example

Insert 1,2,3,4,5,6 into BST, in that order.

2N

N

Example

Insert 3, 5, 1, 2, 4, 6 into BST, in that order.

@%

The expected height of a BST built by inserting the
keys in random order is ©(log n).

Idea

To build a BST, take all n keys, shuffle them
randomly, then insert.

No need for Red-Black Trees, right?

Problem
Usually don't have all the keys right now.
This is a dynamic set, after all.

The keys come to us in a stream, can't specify
order.

Goal

Design a data structure that simulates random
insertion order without actually changing the
order.

DSC /70

DATA STRUCTURES % ALLoRITHMS

Treaps

Randomization

If insertions are in a random order, expected
depth of a BST is ©(logn).

But in online operation, we cannot randomize
insertion order.

Now: an elegant data structure simulating
random insertion order in online operation.

First: Recall Heaps 2

A max heap is a binary tree where: /
each node has a priority. @ @
if y is a child of node x, then

y.priority < x.priority

Example

This is a max heap:

Treaps

A treap is a binary tree in which each node has
both a key and a priority.

It is @ max heap w.r.t. its priorities.

It is a binary search tree w.rt. its keys.

Example

This is a treap:

Example

This is a treap:

Example

This is a treap:

BST Operations

Because a treap is a BST, querying, finding
max/min by key is done the same.

Insertion and deletion require care to preserve
heap property.

Insertion

Find place to insert node as usual.

While priority of new node is > than parent’s:
Left rotate new node if it is the right child.
Right rotate new node if it is the left child.

Rotate preserves BST, repeat until heap property
satisfied.

(Right) Rotation

(W
(x) -
JOX c A
A B

P

Example: Insertion

Insert key: 16, priority: 65.

Example: Insertion

Insert key: 16, priority: 65.

Example: Insertion

Insert key: 16, priority: 65.

Example: Insertion

Insert key: 16, priority: 65.

Deletion

While node is not a leaf:
Rotate it with child of highest priority.

Once it is a leaf, delete it.

DSC /70

DATA STRUCTURES § ALLORITHMS

Treap Properties

Good Question

Is it always possible to build a treap?

Given any set of (key, priority) pairs, inserting them
one-by-one into a treap always results in a valid
treap (no matter the insertion order).

Proof Idea
Start with a treap (possibly empty).

Inserting new (key, priority) preserves treap:
BST: rotation preserves BST property
heap: initially violated, but rotation repeated until it
is satisfied

Given any set of (key, priority) pairs, if both keys
and priorities are unique, then the treap is unique.

Corollary: Given any set of (key, priority) pairs, if
both keys and priorities are unique, inserting them
one-by-one into a treap results in the same treap,
no matter the insertion order.

Example

Insert (3, 40), (1, 20), (10, 50), (6, 30), (5, 100), in that order

a
2/uo @

& @

Example

Insert (5, 100), (10, 50), (3, 40), (6, 30), (1, 20), in that order

2w @
(b (>

Proof Idea

Root node must be node w/ highest priority.

Root's left (right) child must have highest priority
among nodes with key < (>) root key.

Apply recursively.

Given any set of (key, priority) pairs, if both keys
and priorities are unique, then inserting them one-
by-one into a treap (in any order) results in the
same BST one would obtain by inserting into a BST
in decreasing order of priority.

DSC /70

DATA STRUCTURES § ALLORITHMS

Randomized Binary Search Trees

Given any set of keys, if they are inserted into a
BST in random order, the result is (almost surely)
balanced. The expected height is ©(log n).

Given any set of (key, priority) pairs, if both keys
and priorities are unique, then inserting them one-
by-one into a treap (in any order) results in the
same BST one would obtain by inserting into a BST
in decreasing order of priority.

The Idea

When inserting a node into a treap, generate
priority randomly.

The resulting treap will be the same tree as a BST
built with nodes randomly ordered according to
these priorities.

It will almost surely be balanced.

This is called a randomized binary search tree>.

3Sometimes people call these treaps

Warning

Randomness does not mean that the result of,
for example, a query has some probability of
being incorrect.

BST operations on treaps are always, 100%
correct.

The structure is random.

g 7 ﬁ//%/é«ample

Inser 1, 2, 3, 4,5, 6 into a treap, generating priorities
randomly.

N\
u[\2
7\
7l 5/b

\

2(? blz

Time Complexities

For randomized BSTs, expected times:
query O(logn)
minimum/maximum ©(log n)
next largest/smallest ©(logn)
insertion O(logn)

Worst case times are O(n), but very rare

Comparison to Red-Black Trees

When compared to red-black trees, randomized
BSTs are:

same in terms of expected time;
perhaps slightly slower in practice;
much easier to implement/modify.

Good trade-off for a data scientist!

Priority Hacks

Several interesting strategies for generating a
new node’s priority, beyond simply generating a
random number.

g
Idea #1: Hashing %

Instead of randomly generating a number, hash
the key to get priority.

Works, provided hash function looks random.

Careful! In python, hash(300) == 300

O

Idea #2: “Learning” 0<c7

Z
Idea: Frequently-queried items should be neard
top of tree.

When an item is queried, update its priority:

new priority = max(old priority,random number)

DSC /70

DATA STRUCTURES % ALLoRITHMS

Order Statistic Trees

Modifying BSTs

More than most other data structures, BSTs must
be modified to solve unique problems.

Red-black trees are a pain to modify.

Treaps/randomized BSTs are easy!

Order Statistics

Given n numbers, the kth order statistic is the
kRth smallest number in the collection.

Example

[99, 42, -77, -12, 101]
1st order statistic: - FF
2nd order statistic: - 1Z

4th order statistic: 99

Some special cases of order statistics go by differ-
ent names. Can you think of some?

Special Cases
Minimum: 1st order statistic.
Maximum: nth order statistic.
Median: [n/2]th order statistic”.

pth Percentile: [— nlth order statistic.

“What if n is even?

Computing Order Statistics

Quickselect finds any order statistic in linear
expected time.

This is efficient for a static set.

Inefficient if set is dynamic.

Goal

Create a dynamic set data structure that
supports fast computation of any order statistic.

Does the “two heaps” trick from before work?

BST Solution

For each node, keep attribute .size, containing
of nodes in subtree rooted at current node

-\%
M *

Example: Insert/Delete

Challenge
S
changes when nodes are
mserted/deleted

We must modify the code for insertion/deletion

A pain with R-B tree; easy with treap!

D3SC /70

DATA STRUCTURES § ALLORITHMS

BSTs vs. Heaps

BSTs vs. Heaps
Seemingly similar.
Both are binary trees.

Similar time complexities.

Summary

Balanced BST Binary Heap

get minimum/maximum O(logn)’ o(1)
extract minimum/maximum O(logn) O(logn)
insertion O(logn) O(log(n))

>Can actually be optimized to ©(1)

BSTs

Comparison

Heaps
No cache locality Cache locality
Memory for pointers Use less memory
Maintains sorted order Costly to query
Used for order statistics, Used for max/min

queries

