DSC /70

DATA STRUCTURES § ALLORITHMS

Today'’s Lecture

Approximate Nearest Neighbor

Given: a set of n points in RY and query point p.
Compute: (approximate) nearest neighbor of p.

Last time: k-d trees do not scale well with d.

Today

Slightly different problem: given a distance r and
query p.

Return (approximately) all of the points within
distance r of p.

Can use to compute ANN.

Today
We'll introduce locality sensitive hashing.
An important idea.

We'll see similar themes in remainder of course.

DSC /70

DATA STRUCTURES § ALLORITHMS

Implementing a NN Grid

Grids

Given input point p, want quick way to find
nearby points.

Idea: divide space into cells using grid.
Find cell containing p, search it.

How would we implement this?

é

™\
o
~

Grid Cells

Each point (x, y) given cell id: (|x], Ly])
Example: (1.2, 6.7) given cell id (1, 6).

Store (x, y) in dictionary with cell id as key.
Discretization allows multiple points in same cell.
Store collisions in list.

Generalizes naturally to d-dimensions.

class NNGrid:

def __init__(self, width):
self.width width
self.cells {}

def cell_id(self, p):

p = np.asarray(p)
cell_id = np.floor(p / self.width).astype(int)
return tuple(cell_id)

def insert(self, p):
"""Insert p into the grid.”"”
cell_id = self.cell_id(p)
if cell_id not in self.cells:
self.cells[cell_id] = []
self.cells[cell_id].append(p)

def points_in_cell(self, p):
cell_id = self.cell_id(p)
if cell_id not in self.cells:
return []
points_in_cell = self.cells[cell_id]
turn into an array
return np.vstack(points_in_cell)

def query(self, p):
return brute_force_nn(self.points_in_cell(p), p)

Note

This may fail - NN could be in different cell.

L
* (X
A
o 080 TN o8

% o
° e;‘,.'.m

S

]
. e

.
o o
T
PR Pt
o
]

..
L

Problems

In d dimensions, cell id has d entries.

cell-id(p) = (1x, /w], X, /w], ..., x4/ w])

All entries must be exactly the same for two
points to have same cell id.

This is very unlikely. Most cells are empty or
contain one point.

High-Dimensional Cuboids
One “fix”: increase cell width parameter.

Suppose we want to ensure any points within

distance r are in same call.
Then cell width must be 2r. °]
]

High-Dimensional Cuboids

But a d-dimensional cuboid of width 2r can
contain points at distance 2/dr from one
another! d
= 000 g
zﬁ.;ow/‘ X Or

For even modest r, the whole data set is in one

cell. 2
\‘S Yy? yYr?

v = 2(zr

Main Idea

Dividing into a grid of cuboids fails in high dimen-
sions. Either the cells are empty, or contain every-
thing, depending on the width!

DSC /70

DATA STRUCTURES % ALLoRITHMS

A Randomized “Grid”

A Randomized “Grid”

Idea: Instead of axis-aligned grid, divide into
cells using k « d random directions.

Cell Shape

Cells are no longer d-dimensional cuboids.

They are random k-dimensional polytopes.

Question

Why is this better? We'll see in the next sections.

Projection

How do we determine which cell a point lies in?

v (2y) (], [8))

Cell IDs

Pick k random unit vectors, i, ...,

Pick a width parameter, w.

-

Given any point p, its cell id is':

o [£22][222]..

Tuse same width and unit vectors for all points

iR e RY.

Example

Quick Cell-ID Calculation

Place ™, ..., i into a mgtrix:
é’/ﬁ—
- @M S
(u)T
u-|< @ -
- (ﬁ(k))T —

Then cell-id(p) = entrywise-floor(Up/w)

Generating Random Unit Vectors

def gaussian_projection_matrix(k, d):
X = np.random.normal(size=(k, d))
U= X/ np.linalg.norm(X, axis=1)[:,None]
return U

class NNProjectionGrid:

def

def

__init__(self, projection_matrix, width):

self.width = width
self.projection_matrix = projection_matrix
self.cells = {}

cell_id(self, p):

projection = self.projection_matrix @ p
cell_id = np.floor(projection / self.width)
return tuple(cell_id.astype(int))

insert, query, points_in_cell same as for NNGrid

But wait... 7~ p*

In high dimensions, still very unlikely for cell to
contain >1 point.
p L{ﬂ—:d =

. | 1171
Idea: banding. Try, try again. & L4 1
Build multiple NNProjectionGrids with
different random projections.

Find points_in_cell for each, pool them
together.

Multiple Random Projections

Locality Sensitive Hashing

This idea (multiple random projections) is an
example of Locality Sensitive Hashing (LSH).

We'll explore it more in the next section.

class LocalitySensitiveHashing:

def __init__(self, 1, k, d, w):
self.randomized_grids = []
for i in range(l):
U = gaussian_projection_matrix(k, d)
randomized_grid = NNProjectionGrid(U, w)
self.randomized_grids.append(randomized_grid)

def insert(self, p):
for randomized_grid in self.randomized_grids:
randomized_grid.insert(p)

def query_close(self, p):
nearby = []
for randomized_grid in self.randomized_grids:
points_in_cell = randomized_grid.points_in_cell(p)
nearby.append(points_in_cell)
return np.vstack(nearby)

def query_nn(self, point):
results = self.query_close(point)
pool = np.vstack([r for r in results])
if len(pool) == o:
raise ValueError('No points nearby.')
return brute_force_nn(pool, point)

Parameters
1: number of randomized “grids”
k: number of random directions in each “grid”

w: bin width

Tuning Parameters

Choose so that .query_close returns a small #
of points.

If # is very small (or zero), either:
increase w or ¢
decrease R

Note

This is an approximate NN technique!
May not find the NN.

May not return anything!

DSC /70

DATA STRUCTURES § ALLORITHMS

Theory of Locality Sensitive Hashing

Why does LSH work?

Two approaches to understanding LSH.
1) Hashing view.

2) Dimensionality reduction view.

Standard Hashing

A hash function h : X — Z takes in an object
from X and returns a bucket number.

—— | —
B —
—

Standard Hashing
Collision: two different objects have same hash.
Usually, collisions are bad.

Want similar things to have very different hashes.

Locality Sensitive Hashing

But in NN search, we want “close” items to be in
the same bucket (have same hash).

“Far” items should be in different buckets (have
different hash).

Locality Sensitive Hashing
Let r be a distance we consider “close”.
Let cr (with ¢ > 1) be a distance we consider “far”.

Suppose H is a family of hash functions.

LSH Family

H is an LSH family if when h is randomly drawn
from H:

P(h(x) = h(y)) 2p, whend(x,y)<r
P(h(x) = h(y)) < p, whend(x,y)2cr

where p, > p,.

Main Idea

If x and y are close, the probability that they hash
to the same bin is not too small. If they are far, the
probability is not too large.

Example: Random Projections

We have seen one LSH family: random
projections followed by binning.

H has infinitely-many hash functions, one for
each direction i:

L |u-p
ha(p)=\‘7)

Example: Random Projections

Suppose a random hash function h is chosen.

Claim:

P(h(x) = h(y)) = when d(x,y) s w/2

N|[—=

when d(x,y) 2 2w

W=

P(h(x) = h(y)) <

ition

Intu

Proof: Close

In worst case, grid is orthogonal to line between
points.

Proof: Far

Only possible if grid is close to parallel.

2w

Proof: Far b sl - 20°

\/;

Angle must be below 30'.

Amplification
Lots of points have same hash.

To be more selective, randomly select k hash
functions for cell id.

cell-id(x) = (h,(x), h,(x), ..., h,(x))

Example: Random Projections

In case of random projections.

cell-id(p) = {

Collision Probability

h () = Iy (7) z F
(Y) "lLLQD - th
P(h(x) = h(y)) 2 p, if close A
P(h(x) = h(y)) < p, if far.

Remember:

Collision occurs if h,(x) = h.(y) Vi € {1, ..., R}.

Probability of collision...
if close: 2 pf

if far: < p&

Choosing k
Want prob. of far points colliding to be small.
Say, 1/n.

Set p® = 1/n. Then

Main Idea

We can use k = ©(log n) hash functions.

Main Idea

When using random projections as hash functions,
we can use kR = ©(logn) directions. This is usually
much less than d.

But wait...

Probability of close points colliding is p’f.

Let p, = pg. We'll have p < 1, since p, < p,.

Since p% = 1, we have p¥ = .

This is very small.

Banding

Before: one set of k hash functions.

With banding: keep £ sets (bands) of k hash
functions.

To query NN of p, find points that are in the same
cell as p in any of the bands.

Banding

Probability of at least one match:

1 1 1 p
— + — + ..t — = —
nP nP nP nP
collision in band 1 collision in band 2 collision in band ?

Want this to be = 1, so:

p=nP

Main Idea

We should set the number of bands to be n”. p
depends on ¢, and is usually not small. For random
projections, p = .63.

Analysis
How efficient is LSH?
Worst case, everything hashes to same bin: O(n).
In practice, much better.

Requires a lot of memory. (fn).

Other Distances
LSH works for many different similarity measures.
Random projections are for Euclidean distances.

But other hashing approaches work for cosine
distance, Jaccard distance, etc.

D3SC /70

DATA STRUCTURES § ALLORITHMS

The Johnson-Lindenstrauss Lemma

Why does LSH work?

Two approaches to understanding LSH.
1) Hashing view.

2) Dimensionality reduction view.

4

= ¥
d -
4

/

The Johnson-Lindenstrauss Lemma says that,
given n points in RY you can reduce the dimen-
sionality to k = logn while still preserving relative
distances by randomly projecting onto a set of k
unit vectors.

asv RY

The Johnson-Lindenstrauss Lemma (Informal). Let
X be asetofn pointsin R?. Let U be a matrixwhose
k = O(log(n)/€?) rows are Gaussian random vectors
in RY. Then for every X,y € X,

Ix-yll < (1)U - Uy

LSH and J-L

In LSH, we use k = O(log n) hash functions.

If these hash functions are random projections,
the J-L lemma tells that distances are largely
preserved.

A Different View of LSH

Given p € RY randomly project to R with
kR = logn.

Let new coordinates be (y,,¥,, ..., ¥})-

Use standard grid to assign cell id.

LSH (for Euclidean distances) (without banding)
can be viewed as dimensionality reduction by ran-

dom projections, followed by binning into a stan-
dard grid.

DSC /70

DATA STRUCTURES % ALLoRITHMS

NN in Practice

In Practice
LSH is an important idea.
Good performance in practice.
But heuristic approaches are often faster.

faiss and annoy, among others.

Hierarchical k-Means

Product Quantization

b d
24 g . A
2 9 2 & <=

Navigable Small Worlds

j&%&%l

\V '

