DSC /70

DATA STRUCTURES § ALLORITHMS

Today'’s Lecture



Disjoint Sets

Often need to keep a collection of disjoint sets.
Example: {{4,6,2,0},{1,3},{5}}

May need to union disjoint sets.

May need to check if two items are in same set.



O

0

Use Case G\/o

We are given a stream of nodes, edges.
Want to keep track of CCs at every step.

BFS/DFS take ©(V + E) time; efficient to compute
CCs once, but then need to recompute.



Use Cases
Used in Kruskal's algorithm for MST.
Used in single linkage clustering.

Used in Tarjan’s algorithm to find LCA in a tree.



Disjoint Sets, Abstractly

A disjoint sets ADT represents a collection of
disjoint sets.
Example: {{4,6,2,0},{1,3},{5}}

Supports three operations:
.make_set(), .find_set(x), .union(x, y)

Sometimes called a Union-Find data type.



Assumption

Elements are consecutive integers.
Example: {{4,6,2,0},{1,3},{5}}

Not really a limitation.
Keep dictionary mapping, e.g., string ids to integers.



.make_set()

Create a new singleton set.

Element “id” automatically
inferred, returned.

>>>
>>>

>>>

>>>

§ 0% 013 1%

ds
ds

ds

ds

= DisjointSet()
.make_set()

.make_set()

.make_set()



5503, 113, %235

,union(X, y) % %0 z,%\l}ilgz)

>>> ds = DisjointSet()
>>> ds.make_set()
Union sets containing x and vy. ©
>>> ds.make_set()
1
Updates data structure in-place. Z» ds.make_set()
>>> ds.union(e, 2)



{io,z,n%ﬁ
.find_set(x)

>>> # ds is {{o}, {1}, {2}}

Find representative of set containing x. >>> ds.union(e, 2)
>>> ds.find_set(o)
. . . (0]
Representative is arbitrary, but same >>> ds.find_set(2)
for all items in same set. o
>>> ds.union(oe, 1)
Used to test if two nodes in same set. >>> ds.find_set(o)
1
>>> ds.find_set(1)
Guaranteed to not change unless a 1

union is performed. >>> ds.find_set(2)



Today’s Lecture

How do we implement a disjoint set?

We'll introduce the disjoint set forest data
structure.

Talk about two heuristics that make it very
efficient.



DSC /70

DATA STRUCTURES § ALLORITHMS

Disjoint Set Forests



Implementing Disjoint Sets
First idea: a 1ist of sets.

[{2, «, 3}, {2, 5}, {o}]

Problem: unioning two sets takes time linear in
size of smaller.



Looking Ahead

We'll design data structure so that all operations,
including union, take (practically) ©(1) time.



The ldea %

7\

Represent collection as a Y 2
forest of trees, called a
Disjoint Set Forest. f

b

Example: —
{{2,4,3,6},{1,5},{0}}

Z 5
Not unique! /1\ \ T
Z 1

Y %




Tree Structure
Each node has reference to parent.

Not a binary tree!



Representing Forests
We have several choices:
1) Each node is own object with parent attribute.

2) Keep a list containing parent of each element.



Approach #1

class DSFNode:

def __init__(self, parent=None):
self.parent = parent

make_set becomes DSFNode( )
find_set and union are functions, not methods.

They accept DSFNode objects.



Approach #2

class DisjointSetForest: 7 ,\

6
def __init__(self): 2. \ ,‘
# self._parent[i] is R 2

# parent of element 1
self._parent = [] o /‘
Y

def make_set(self):

def find_set(self, x):

[') 5! 5/ b) ;) M/ /Vlmt]

def union(self, x, y):



Implementation Notes
5
We'll use the second approach. lj

We can use second representation because
elements are consecutive integers.

For cache locality, use numpy array, not list.



(0 [ Z

.make_set

def make_set(self):
# infer new element's ”"id”
x = len(self._parent)
self._parent.append(None)
return x

2503, 915, 1235

>>> dsf = DisjointSetForest()
>>> dsf.make_set()

0

>>> dsf.make_set()

1

>>> dsf.make_set()

2

>>> dsf._parent

[None, None, None]



.find_set(x)

Idea: use the “root” as the representative.

Zfl{ /\4 5/0
.

(2



.find_set

def find _set(self, x):
if self._parent[x] is None:
return Xx
else:
return self.find_set(self._parent[x])



.union(x, vy)

Idea: make one root the parent of the other.



@ O @

.union(x, vy)

def union(self, x, y):
x_rep = self.find_set(x)
y_rep = self.find_set(y)
if x_rep != y_rep:
self._parent[y_rep]

x_rep

>>> # dsf is {{e}, {1}, {2}}
>>> dsf._parent

[None, None, None]

>>> dsf.union(oe, 1)

>>> dsf._parent

[None, o, None]

>>> dsf.union(1, 2)

>>> dsf._parent

[None, o, o]



Analysis
.make_set: (1) time'
.union: depends on .find_set

.find_set: O(h), where h is height of tree

TAmortized, since we're using a dynamic array. But truly ©(1) with an
over-allocated static array or in the object representation.



Tree Height

Trees can be very deep, with h = O(n).
.find_set and .union can take ©(n) time!

Example: %% 0,\,2,2,43%
# dsf is {{e}, {1}, {2}, {3}, {4}}

>>> dsf.union(1, o)

>>> dsf.union(2, 1) /ﬁ - /b
>>> dsf.union(3, 2) /b
>>§ de.ERigﬂ(q, 3) @ @ @ z v



/40
Tree Height @/g%

But trees can also be shallow, with h = O(1).

Example: {go,l,z,z,'—\%
# dsf is {{e}, {1}, {2}, {3}, {4}}

>>> dsf.union(e, 1)
>>> dsf.union(1, 2)

>>> dsf.union(2, 3) O

>>> dsf.union(3, 4) @ @ @ 2



DSC /70

DATA STRUCTURES § ALLORITHMS

Path Compression and Union-by-Rank



The Bad News

We saw that the tree can become very deep.

In worst case, . find_set and thus .union take
O(n) time.



Heuristics
Now: two heuristics helping trees stay shallow.
Union-by-Rank and Path Compression

Together, these result in a massive speed up.



Path Compression

Idea: if we find a long path during . find_set,
“compress” it to (possibly) reduce height.

P

(P z F+ y



.find_set

def find _set(self, x):
if self._parent[x] is None:
return X
else:
root = self.find_set(self._parent[x])
self._parent[x] = root
return root



Union-by-Rank

Should we .union(x, y) or .union(y, x)?

@/‘



Union-by-Rank

Placing deeper tree under shallower tree
increases height by one.

But placing shallower tree under deeper tree
doesn’t increase height.

Idea: always place shallower tree under deeper.



Rank

We need to keep track of height (rank) of each
tree.

Store rank attribute.

rank[i] is height? of tree rooted at node i.

2Exactly the height if path compression isn’t used, but upper bound if it is.



Rank

class DisjointSetForest:

def

def

__init__(self):
self._parent = []
self._rank = []

make_set(self):

# infer new element's "id”
x = len(self._parent)
self._parent.append(None)
self._rank .append(o)
return X



-.union
(0

def union(self, x, y): ;ﬁ

x_rep = self.find_set(x)

y_rep = self.find_set(y) (::>
if x_rep == y_rep:
return (i;>

if self._rank[x_rep] > self._rank[y_rep]:
self._parent[y_rep] = x_rep
else:
self._parent[x_rep] = y_rep
if self._rank[x_rep] == self._rank[y_rep]:
self._rank[y_rep] += 1



Note

With path compression, rank is no longer exactly
the height - it is an upper bound.

But this is good enough.



DSC /70

DATA STRUCTURES § ALLORITHMS

Analysis



Analysis of DSF

A DSF with path compression and union-by-rank
ensures trees are shallow.

How does this affect runtime?



Answer
Assuming union-by-rank and path compression...

In a sequence of m operations, n of which are
.make_sets...

Amortized cost of a single operation is O(a(n)).

a is the inverse Ackermann function, and it is
essentially constant.



Inverse Ackermann

a(n) n

0 n e [0,1,2]

1 n=3

2 nel4,..,7]

3 nels,..,2047]

4 n € [2048, ...,2%%8] and beyond



Proof
The formal analysis is quite involved.

But we’ll provide some intuition.



Union-by-rank Alone

Union-by-rank alone ensures height is O(log n).

# dsf is {{e}, {1}, {2}, {3}} @

>>> dsf.union(oe, 1) /\
>>> dsf.union(2, 3) CD?

>>> dsf—wnion(o, 2) @t
o ®



Union-by-rank Alone

Union-by-rank alone ensures .find_set is
O(logn).



Path Compression + U-by-R

With path compression, individual . find_set
calls can take O(logn).

But they massively improve subsequent calls.
For other nodes, too!




