DSC /70

DATA STRUCTURES § ALLORITHMS

Today'’s Lecture

Algorithms
We've been studying data structures.
We'll now move towards algorithm design.
Data scientists do design algorithms.

But perhaps more important to understand solutions
to common problems and which problems are difficult.

Today
We'll introduce the idea of an optimization problem.

Talk about one easy strategy that sometimes works.

DSC /70

DATA STRUCTURES § ALLORITHMS

Optimization Problems and Design Strategies

Optimization Problems

We often want to find the best.
Shortest path between two nodes.
Minimum spanning tree.
Schedule that maximizes tasks completed.
Line of best fit.

These are optimization problems.

Example: Regression

Given a set of n points in R?, find a straight line
y = mx + b which minimizes the Sum of Squared Errors.

Given: set of n points {(x;, y,)} in R?
Search Space: all straight lines of formy =mx + b

Objective Function: ¢(m,b) = 3. (y; - (mx; + b))?

Continuous Optimization
Here, the search space is continuous, often infinite.

Methods for solving often use calculus.

Discrete Optimization
Here, the search space is discrete, typically finite.
Example: shortest path between two nodes.
Methods for solving (usually) can’t use calculus.

We will focus on these problems.

Brute Force
If search space is finite, can employ brute force search.

Typically search space is too large to be feasible.

Design Strategies

Focus on design strategies for discrete optimization.:
Greedy Algorithms
Backtracking
Dynamic Programming

D3SC /70

DATA STRUCTURES § ALLORITHMS

The Greedy Approach by Example

Problem

Choose: 4 numbers with largest sum.

95
62
85
88

83
65
N
72

80
55
70
59

77
75
74
79

Specification
Given: A set X of n numbers and an integer k.
Search Space: Subsets S c X of size k.

Objective: maximize sum of numbersin S,

9(5)= s

Brute Force

Brute force: try every possible subset of size k.

How many are there?
(%) = e(n)

Time complexity is O(k - n*) ﬂ(nk>

The Greedy Approach

83 80 77
G2 68 55 75
70 74

@ 72 59 79

The Greedy Approach
At every step, make the best decision at that moment.

Is this optimal? Not always, but it is here.

Proof

Let x, 2 - 2 x, be the k largest numbers. Lety, > 2y, be some other
solution. Since x,, ..., X, are the k largest:

X, 2V X2V, ey X2V,
Therefore:
k k
RPN’
i=1 i1

Since the other solution was arbitrary, this shows that the greedy
solution is at least as good as anything else; therefore it is maximal.

Efficiency
Algorithm: loop through once, find k largest numbers.
Linear time, O(n).

Much faster than ©(k - n®)!

A Variation

Now you can only choose one number from each row.

83 80 77
65 55 (75) e—

85 (9D 70 74
(88) 72 59 79

Specification
Given: An n x n matrix X of numbers and an integer k.

Search Space: Subsets S c X of size k where each
element is from a different row of X.

Objective: maximize sum of numbers in S.

$(S)=> s

Optimality

The greedy approach of choosing largest within each
row is optimal.

Another Variation

Now you can only choose one from each row/column.

8
= o % o

Specification
Given: An n x n matrix X of numbers and an integer k.

Search Space: all subsets of entries of X of size k such
that each element is in a different row/column of X.

Objective: maximize sum of numbers in subset.

$(S)=> s

Greedy is not Optimal

The optimal solution is: 2}6 + 75+ 9'{ + 88 =334

95 83 (80 77
62 65 @
85 (91 70 74

72 59 79

Main Idea

For some problems, a greedy approach is guaran-
teed to find the optimal solution. For other prob-
lems, it is not.

Main Idea

Coming up with a greedy algorithm is usually sim-
ple - proving that it finds the optimal may not be
SO easy.

DSC /70

DATA STRUCTURES § ALLORITHMS

Activity Selection Problem

Vacation Planning

s, £)

I L ‘[\~ I I I S — I I I I I I
sunrise beach@ (mountain climt;ib sunset beach hike

| I | | T —T | | | |

|

: breakfast surf javascript tutorial ﬂ@

: ; ‘4‘_ T

I -

‘ swim lunch nap (Python tutorial

I

|

|

|

Formalized

This is called the activity selection problem.
Given: a set of start/finish times (s;, f;) for n events

Search Space: all schedules S with non-overlapping events

Format: S is a set of event indices e, e,, ..., e,

Objective: maximize |S| (number of events)

¢(S) = IS|

Greedy Strategies
There are several strategies we might call “greedy”.

Approach #1: in order of duration, shortest events first.

In Order of Duration

(]

I I I I
SUW
|

_mountainclimbing™ sunset heach-hike =
| |

| | | | | | | | |
W)aﬁ/ javascript tutoriatb—
| | L
—— ! 17 '
swim I ﬁc’h\) ‘ nap) (@on tutorial
| —_ & |
| | | | | | |
| | | | | | | |

T

Greedy Strategies

Approach #2: in order of start time.

In Order of Start Time

| | | |

| | | |

I I —— I
(mountain CIQ

| | |

|
l
bing
| | |
;a{ jan
|
|

| |
——
L /Da’{ (%tutorial)
| : | : |

Greedy Strategies

Approach #3: in order of finish time.

In Order of Finish Time

l l l l
sunrise-beach hike
|

| | | |
javascri i

| | | |
| |
| |

M—

nap

d

python tutorial

In Order of Finish Time
Choose event with earliest finish time as first event.

Choose subsequent events in order of finish time.
provided that they are non-overlapping.

This is guaranteed to find global optimum.

But how do we know this?

D3SC /70

DATA STRUCTURES § ALLORITHMS

Exchange Arguments

Convincing Yourself
Designing a greedy algorithm is usually easy.
It can be hard to convince yourself that it is optimal.

Now, one proof technique: exchange arguments.

First: Proving Non-Optimality

To show that a strategy is non-optimal, find a
counterexample.

Proving Optimality

There may be many optimal solutions - we want to
show that the greedy solution S; is always one of
them.

Exchange Arguments

Start with an arbitrary optimal solution, S*.
Make a chain of optimal solutions S*,S.,S,, ..., S

At every step from S, | to S,
construct solution S, by exchanging part of S, , with S
argue that S, is valid'
argue that S, is also optimal

Proves S is optimal, as ¢(S*) = ¢(S,) = ¢(S,) = ... = ¢(S;)

"It is part of the search space and meets all constraints.

Exchange Argument for Activities

I

greedy |

solution, S; 1 (591 ! f91) (522 ! fez) (s3e'f53) (se4, fez.)
| |

optimal | (g5, Fot) (S fes) | | (5 Fet) (565, F2t)

solution, S* |

greedy
solution, S

optimal
solution, S*

hybrid
solution, S,

Exchange Argument for Activities

(5,1 fe,) (Sey1fey) (ssefe,) (s, fe,) !
3 (sezi fex) sifes (Ser fes) (Sezo fer
(Se, 0 fey) | | 5o fes (Ser fe3) (Sezo fer

greedy
solution, S

optimal
solution, S*

hybrid
solution, S,

Exchange Argument for Activities

(S0, oy (CH) (5,¢ £,,) (50,0 f2,) |
| ERE sfe) || e fes) (e e
(Se, 0 fey) (5e,r fe,) (Ser fe3) (Sezo fer

greedy
solution, S

optimal
solution, S*

hybrid
solution, Sy

Exchange Argument for Activities

greedy
solution, S

optimal
solution, S*

hybrid
solution, S,

Exchange Argument for Activities

(S0, oy (CH) (5,¢ £,,) (50,0 f2,) |
| ERE sfe) || e fes) (e e
(e, o) (e, fo,) (e, o) (5o, o)

Exchange Argument for Activities

Take an arbitrary optimal solution S*. Suppose it is different from the greedy
solution, S (as otherwise we're done).

If it's different, it has to be different somewhere. Let's look at the first event in
S* that is not in S; call this the ith event in S*.

We'll exchange the ith event in S* with the ith event in S, but we have to be a
little careful: what if |[S*| > |S,|, so that it's possible that S, has no ith
element? So there are two cases: i < |S;| and i > |S;].

Exchange Argument for Activities

First case: i < |S;|. Then exchange the ith event in S* with the ith eventin S,
creating a new solution S’.

This is valid: the event from S cannot overlap with any of the events in S*,
since the previous i - 1 events in S* are the same as in S (and they didn’t

overlap), and the finish time of the greedy event is < the finish time of event
it is replacing, so it cannot overlap with the remaining events.

It is also optimal, since |S'| = |S*].

\

s, 1 T 1N 1

]))
Exchange Argument for Activities

Second case: i > |S;|. This means that there is at least one “extra” event in S*
thanin S,.

But this cannot happen: this extra event does not overlap with the events in
S (since S; is equal to the first i - 1 elements of S*, and the “extra” event
doesn’t overlap with them). Its finish time is larger than any event in S;. So

the greedy approach would have included this event. Thus this case is not
possible.

Exchange Argument for Activities

In either case, S is a valid optimal schedule.

S* and S, can differ in only a finite number of places; therefore, repeating this
procedure a finite number of times produces a chain of optimal solutions
where each solution is more similar to S.. The chain terminates when S is

reached, which shows that S is optimal (|S;| = [S*|).

DSC /70

DATA STRUCTURES § ALLORITHMS

Designing Greedy Algorithms

Designing Algorithms
When do we know to use a greedy algorithm?

It isn’t always obvious.

A Pattern

Our examples have a common pattern: sort by some

attribute, then loop through.
Number grid: take numbers in descending order.
Activities: take activities in increasing order of finish time.
MST: take edges in increasing order of weight.

This is a new justification for value of sorting.

Suggestion: when tackling a problem, try sorting first.

Greedy Approximations

A greedy algorithm can be useful, even if not
guaranteed to produce optimal answer.

Especially true if exact algorithms are slow.

Example: R-means clustering (Lloyd's algorithm)

k-means Problem
Given: n data points X in R?, parameter k.

Search Space: all clusterings C = {X,, ..., X, } of X into R
disjoint sets.

Objective function: minimize

R
¢(C) = Z Z(x - mean(X;))?

i=1 xeXi

Greedy Algorithm

Lloyd’s algorithm (a.k.a., the “k-means algorithm”) is a
greedy algorithm for minimizing the k-means
objective.

Start with k centroids, p, ..., U,,.

At each step, let X; be set of points closest to p,,
update y; to be mean(X;), repeat until convergence.

Each step decreases value of objective function.

Optimality
Lloyd’s algorithm is not guaranteed to find optimum.
Then again, no feasible algorithm is.

Used in practice because it is fast and “good enough”.

