

Today's Lecture

Beyond Greedy

- Greedy algorithms are typically fast, but may not find the optimal answer.
- Brute force guarantees the optimal answer, but is slow.
- Can we guarantee the optimal answer and be faster than brute force?

Today

- ► The **backtracking** idea.
- ► It is a useful, general algorithm design technique¹.
- And the foundation of dynamic programming.

¹Commonly seen in tech interviews

The 0-1 Knapsack Problem

0-1 Knapsack

- Suppose you're a thief.
- You have a knapsack (bag) that can fit 100L.
- ► And a list of *n* things to possibly steal.

item	size (L)	price
TV	50	\$400 \$900
iPad	2	\$900
Printer	10	; \$100
:	:	:

► Goal: maximize total value of items you can fit in your knapsack.

Example

item	size (L)	price		
1	50	\$40		
2	10	\$25	In the bag: $1,2$	
3	80	\$100	Total value: \$40+\$25	
4	5	\$10		
5	20	\$20	Space remaining: 40	
6	30	\$6	Space remaining.	
7	8	\$32		
8	17	\$34		

Greedy

- Does a greedy approach find the optimal?
- What do we mean by "greedy"?
- Idea #1: take most expensive available that will fit.

Example

item	size (L)	price	
2 -3 -4 -5 -6 -7 -8	50 10 80 5 20 30 8 17	\$40 \$25 \$100 \$10 \$20 \$32 \$34	In the bag: 3,8 Total value: \$100 +\$34 =\$134 Space remaining: 3

Greedy, Idea #2

- ▶ We want items with high value for their size.
- Define "price density" = item.price / item.size
- Idea #2: take item with highest price density.

Example

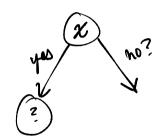
item size (L)	price Po	l
-1 50 -2 10 -3 80 -4 5 -5 20 -6 30 -7 8 -8 17	\$40 .8 \$25 2.5 \$100 1.2 \$10 2 \$20 1 \$6 0.2 \$32 4 \$34 2	In the bag: <u>4, 2, 4, 8, 5, 6</u> Total value: <u>\$32 + \$25 + \$10 + \$34</u> Space remaining: <u>10</u> 124

Greedy is Not Optimal

- Claim: the best possible total value is \$157.
 - ► Items 2, 3, and 7.

Never Looking Back

- Once greedy makes a decision, it never looks back.
- This is why it may be suboptimal.
- Backtracking: go back to reconsider every previous decision.



DSC 190 DATA STRUCTURES & ALGORITHMS

Backtracking

Reconsider every decision.

If we initially tried including x, also try not including x.

```
def knapsack(items. bag size):
    # choose item arbitrarily from those that fit in bag
    x = items.arbitrary_item(fitting_in=bag_size)
    # if None. it means there was no item that fit
    if x is None:
        return o
    # assume x should be in bag, see what we get
    best with = ...
    # backtrack: now assume x should not be in bag, see what we get
    best without = ...
    return max(best with, best without)
```

Recursive Subproblems

- What is BEST(items, bag_size) if we assume that x is in the bag?
- Imagine choosing x.
 - ► Your current total value is x.price.
 - You have bag size x.size space left.
 - ► Items left to choose from: items x.
- Clearly, you want the best outcome for new situation (subproblem).
- Answer: x.price + BEST(items x, bag_size x.size)

Recursive Subproblems

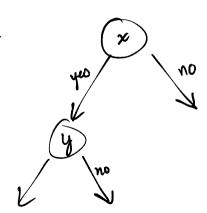
- ▶ What is BEST(items, bag_size) if we assume that x is not the bag?
- Imagine deciding x is not in the bag.
 - Your current total value is o.
 - You have bag_size space left.
 - ► Items left to choose from: items x.
- Clearly, you want the best outcome for new situation (subproblem).
- Answer: 0 + BEST(items x, bag_size)

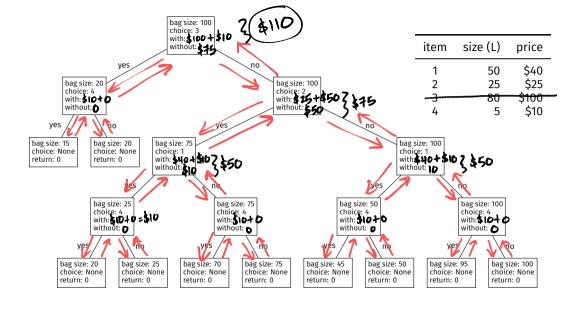
```
def knapsack(items. bag size):
   # choose item arbitrarily from those that fit in bag
   x = items.arbitrary_item(fitting_in=bag_size)
   # if None. it means there was no item that fit
   if x is None:
   # now assume x is not in bag. see what we get
   best without = # knapsack(items - x, bag size)
   return max(best with, best without)
```

```
def knapsack(items. bag size):
    # choose item arbitrarily from those that fit in bag
    x = items.arbitrary item(fitting in=bag size)
    # if None. it means there was no item that fit
    if x is None:
       return o
   items.remove(x) x.price +
    best with = knapsack(items, bag size - x.size)
    best without = knapsack(items, bag size)
    items.replace(x)
    return max(best with, best without)
```

- Backtracking: go back to reconsider every previous decision.
- Searches the whole tree.

Can be thought of as a DFS on implicit tree.





Exercise

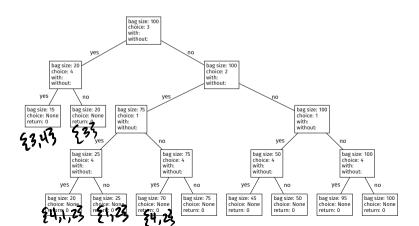
Is the backtracking solution guaranteed to find an optimal solution?

Yes!

- It tries every **valid** combination and keeps the best.
 - A combination of items is valid if they fit in the bag together.

Leaf Nodes

Each leaf node is a different valid combination.



Exercise

Suppose instead of choosing an arbitrary node we choose most expensive. Does the answer change?

No!

- The choice of node is arbitrary.
- Call tree will change, but all valid combinations are tried.

Exercise

How does backtracking relate to the greedy approach? How would you change the code to make it greedy?

Summary

```
def knapsack greedv(items. bag size):
    # choose greedily
    x = items.most valuable item(fitting in=bag size)
    # if None. it means there was no item that fit
    if x is None:
        return o
    # assume x is in the bag, see what we get
    items.remove(x) *. trice
   best with = knapsack(items. bag size - x.size)
    # in the greedy approach, we don't do this
    # best without = # knapsack(items - x, bag size)
    return best with
```


Efficiency Analysis

A Benchmark

- Brute force: try every possible combination of items.
 - Even the **invalid** ones whose total size is too big.
 - Why? Hard to know which are invalid without trying them.
- There are $Θ(2^n)$ possible combinations.
- \triangleright So brute force takes $\Omega(2^n)$ time. **Exponential** : (

Time Complexity of Backtracking

```
def knapsack(items, bag size):
   # choose item arbitrarily from those that fit in bag
   x = items.arbitrary item(fitting in=bag size)
   # if None. it means there was no item that fit
   if x is None:
                                                             T(n) = T(n-1)
       return o
   items.remove(x) x price +
                                                                      + T(n-1)
   best_with _knapsack(items, bag_size - x.size)
   best without = knapsack(items, bag size)
   items.replace(x)
                                                    T(n)= 2T(n-1)+ (n)
   return max(best with, best without)
```

Backtracking Takes Exponential Time

...in the worst case.

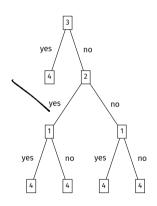
- This is just as bad as brute force.
- ► So why use it?
- Its worst case isn't always indicative of its practical performance.

Intuition

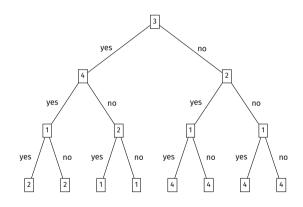
- Brute force tries all possible combinations.
- Backtracking tries all valid combinations.
- ► The number of valid combinations can be much less than the number of possible combinations.²

²Not always true!

Pruning



backtracking



brute force

Pruning

Backtracking prunes branches that lead to invalid solutions.

Example

- 23 items with size/price chosen from Unif([23, ..., 46])
- ▶ Bag size is 46
- ► Brute force: 52 seconds.
- Backtracking: 4 milliseconds.

Example

- ▶ 300 items with size/price chosen from Unif([150, ..., 300])
- ▶ Bag size is 600
- ► Brute force: ? ($\approx 4.6 \times 10^{77}$ years)
- Backtracking: 30 seconds.

Backtracking Worst Case

- knapsack's worst case is when bag size is very large.
- All solutions are valid, aren't pruned.
- But this is actually an easy case!

```
def knapsack 2(items, bag size):
    if sum(item.size for item in items) < bag size:
        return sum(item.price for item in items)
    x = items.arbitrary item(fitting in=bag size)
    if x is None:
        return o
    items.remove(item)
    best with = x.price + knapsack 2(items. bag size - x.size)
    best without = knapsack 2(items, bag size)
    items.replace(x)
```

return max(best with, best without)

Pruning

► This further prunes the tree, resulting in speedup for some inputs.

Branch and Bound

Example

diamond

yes

- Suppose you have a bag of size 100.
- ▶ One of the items is a diamond.
 - Price: \$10,000. Size: 1
- ▶ The other 49 items are coal.
 - Price: \$1. Size: 1
- Do you even consider not taking the diamond?

Idea

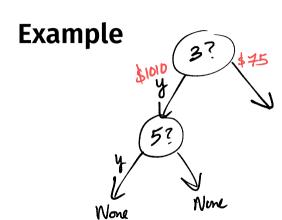
- Assume we take the diamond, compute best result.
- Find quick upper bound for not taking diamond.
- If upper bound is less than best for diamond, don't go down that branch.
- This is branch and bound; another way to prune tree.

Branch and Bound

```
def knapsack_bb(items, bag_size, find_upper_bound):
    # try to make a good first choice
    x = items.item with highest price density(fitting in=bag size)
    if x is None:
        return o
    items.remove(item)
    best with = x.price + knapsack bb(items, bag size - x.size)
    if find_upper_bound(items, bag size) < best with:</pre>
        best without = ⊙
    else:
        best without = knapsack bb(items, bag size)
    items.replace(x)
    return max(best with, best without)
```

item size (L) price 1 50 \$40 2 25 \$25 3 95 \$1000

\$10



Upper Bounds for Knapsack

- How do we get a good upper bound?
- One idea: the solution to the fractional knapsack problem upper bounds that for 0/1 knapsack.

DSC 190 DATA STRUCTURES & ALGORITHMS

Summary

Summary

A backtracking approach is guaranteed to find an optimal answer.

It is typically faster than brute force, but can still take **exponential time**.

Summary

- We can speed up backtracking by pruning:
- Three ways to prune:
 - 1. Prune invalid branches (default).
 - 2. Prune "easy" cases.
 - 3. Prune by branching and bounding.

Summary

- Next time: dynamic programming.
- We'll see it is just backtracking + memoization.