
Lecture 14 | Part 1

String Matching

Strings

▶ An alphabet is a set of possible characters.

Σ = {G, A, T, C}

▶ A string is a sequence of characters from the
alphabet.

”GATTACATACGAT”

Example: Bitstrings

Σ = {0, 1}
”0110010110”

Example: Text (Latin Alphabet)

Σ = {a, … , z, <space>}
”this is a string”

Comparing Strings
▶ Suppose s and t are two strings of equal length,
𝑚.

▶ Checking for equality takes worst-case time Θ(𝑚)
time.

def strings_equal(s, t):
if len(s) != len(t):

return False
for i in range(len(s)):

if s[i] != t[i]:
return False

return True

String Matching
(Substring Search)

▶ Given: a string, s, and a pattern string p

▶ Determine: all locations of p in s

▶ Example:

s = ”GATTACATACG” p = ”TAC”

Naïve Algorithm

▶ Idea: “slide” pattern p across s, check for
equality at each location.

def naive_string_match(s, p):
match_locations = []
for i in range(len(s) - len(p) + 1):

if s[i:i+len(p)] == p:
match_locations.append(i)

return match_locations

s = ”GATTACATACG” p = ”TAC”

Time Complexity

def naive_string_match(s, p):
match_locations = []
for i in range(len(s) - len(p) + 1):

if s[i:i+len(p)] == p:
match_locations.append(i)

return match_locations

Naïve Algorithm

▶ Worst case: Θ ((|𝑠| − |𝑝| + 1) ⋅ |𝑝|) time1

▶ Can we do better?

1The + 1 is actually important, since if |𝑝| = |𝑠| this should be Θ(1)

Yes!

▶ There are numerous ways to do better.

▶ We’ll look at one: Rabin-Karp.

▶ Under some assumptions, takes Θ(|𝑠| + |𝑝|)
expected time.

▶ Not always the fastest, but easy to implement,
and generalizes to other problems.

Lecture 14 | Part 2

Rabin-Karp

Idea

▶ The naïve algorithm performs Θ(|𝑠|)
comparisons of strings of length |𝑝|.

▶ String comparison is slow: 𝑂(|𝑝|) time.

▶ Integer comparison is fast: Θ(1) time2.

▶ Idea: hash strings into integers, compare them.

2As long as the integers are “not too big”

Recall: Hash Functions

▶ A hash function takes in an object and returns a
(small) number.

▶ Important: Given the same object, returns same
number.

▶ It may be possible for two different objects to
hash to same number. This is a collision.

String Hashing

▶ A string hash function takes a string, returns a
number.

▶ Given same string, returns same number.

»> string_hash(”testing”)
32
»> string_hash(”something else”)
7
»> string_hash(”testing”)
32

Idea
▶ Instead of performing 𝑂(|𝑝|) string comparison
for each i:

s[i:i + len(p)] == p

▶ Hash, and perform Θ(1) integer comparison:

string_hash(s[i:i + len(p)]) == string_hash(p)

▶ In case of collision, need to perform full string
comparison in order to ensure this isn’t a false
match.

Example

s = ”ABBABAABBABA”
p = ”BAA”

x string_hash(x)

AAA 2
AAB 5
ABA 3
BAA 1
ABB 4
BAB 1
BBA 3
BBB 2

Pseudocode
def string_match_with_hashing(s, p):

match_locations = []
for i in range(len(s) - len(p) + 1):

if string_hash(s[i:i+len(p)]) == string_hash(p):
make sure this isn't a spurious match due to collision
if s[i:i+len(p)] == p:

match_locations.append(i)
return match_locations

Time Complexity

▶ Comparing (small) integers takes Θ(1) time.

▶ But hashing a string 𝑥 usually takes Ω(|𝑥|).

▶ In this case, |𝑥| = |𝑝|, so overall:

Ω((|𝑠| + |𝑝| + 1) ⋅ |𝑝|)

▶ No better than naïve!

Idea: Rolling Hashes

▶ We hash many strings.

▶ But the strings we are hashing change only a
little bit.

▶ Example: s = ”ozymandias”, p = ”mandi”.

Rabin-Karp

▶ We’ll design a special hash function.

▶ Instead of computing hash “from scratch”, it will
“update” old hash in Θ(1) time.

»> old_hash = rolling_hash(”ozymandias”, start=0, stop=5)
»> new_hash = rolling_hash(”ozymandias”, start=1, stop=6, update=old_hash)

def rabin_karp(s, p):
hashed_window = string_hash(s, 0, len(p))
hashed_pattern = string_hash(p, 0, len(p))
match_locations = []

if s[0:len(p)] == p:
match_locations.append(0)

for i in range(1, len(s) - len(p) + 1):
update the hash
hashed_window = update_string_hash(s, i, i + len(p), hashed_window)

if hashed_window == hashed_pattern:
make sure this isn't a false match due to collision
if s[i:i + len(p)] == p:

match_locations.append(i)

return match_locations

Time Complexity
▶ Θ(|𝑝|) time to hash pattern.

▶ Θ(1) to update window hash, done Θ(|𝑠| − |𝑝| + 1) times.

▶ When there is a collision, Θ(|𝑝|) time to check.

Θ(|𝑝|⏟
hash pattern

+ |𝑠| − |𝑝| + 1⏟
update windows

+ 𝑐 ⋅ |𝑝|⏟
check collisions

)

Worst Case
▶ In worst case, every position results in a collision.

▶ That is, there are Θ(|𝑠|) collisions:

Θ(|𝑝|⏟
hash pattern

+ |𝑠| − |𝑝| + 1⏟
update windows

+ |𝑠| ⋅ |𝑝|⏟
check collisions

) → Θ(|𝑠|⋅|𝑝|)

▶ Example: s = ”aaaaaaaaa”, p = ”aaa”

▶ This is just as bad as naïve!

More Realistic Time Complexity
▶ Only a few valid matches and a few spurious matches.

▶ Number of collisions depends on hash function.

▶ Our hash function will reasonably have Θ(|𝑠|/|𝑝|)
collisions.

Θ(|𝑝|⏟
hash pattern

+ |𝑠| − |𝑝| + 1⏟
update windows

+ 𝑐 ⋅ |𝑝|⏟
check collisions

) → Θ(|𝑠|)

Lecture 14 | Part 3

Rolling Hashes

The Problem
▶ We need to hash:

▶ s[0:0 + len(p)]
▶ s[1:1 + len(p)]
▶ s[2:2 + len(p)]
▶ …

▶ A standard hash function takes Θ(|𝑝|) time per call.

▶ But these strings overlap.

▶ Goal: Design hash function that takes Θ(1) time to
“update” the hash.

Strings as Numbers

▶ Our hash function should take a string, return a
number.

▶ Should be unlikely that two different strings have
same hash.

▶ Idea: treat each character as a digit in a base-|Σ|
expansion.

Digression: Decimal Number System

▶ In the standard decimal (base-10) number
system, each digit ranges from 0-9, represents a
power of 10.

▶ Example:

153210 = (2 × 100) + (3 × 101) + (5 × 102) + (1 × 103)

Digression: Binary Number System

▶ Computers use binary (base-2). Each digit ranges
from 0-1, represents a power of 2.

▶ Example:

101102 = (0 × 20) + (1 × 21) + (1 × 22) + (0 × 23) + (1 × 24)
= 2210

Digression: Base-256

▶ We can use whatever base is convenient. For
instance, base-128, in which each digit ranges
from 0-127, represents a power of 128.

12,97,199128 = (101 × 1280) + (97 × 1281) + (12 × 1282)
= 20912510

What does this have to do with
strings?

▶ We can interpret a character in alphabet Σ as a
digit value in base |Σ|.

▶ For example, suppose Σ = {𝑎, 𝑏}.

▶ Interpret a as 0, b as 1.

▶ Interpret string ”babba” as binary string 101102.

▶ In decimal: 101102 = 2210

Main Idea

We have mapped the string ”babba” to an integer:
22. In fact, this is the only string over Σ that maps
to 22. Interpreting a string of a and b as a binary
number hashes the string!

General Strings

▶ What about general strings, like
”I am a string.”?

▶ Choose some encoding of characters to numbers.

▶ Popular (if outdated) encoding: ASCII.

▶ Maps Latin characters, more, to 0-127. So
|Σ| = 128.

In Python

»> ord('a')
97
»> ord('Z')
90
»> ord('!')
33

ASCII as Base-128
▶ Each character represents a number in range
0-127.

▶ A string is a number represented in base-128.

▶ Example:
Hello128
= (111 × 1280)

+ (108 × 1281)

+ (108 × 1282)

+ (101 × 1283)

+ (72 × 1284)
= 1954094859110

character ASCII code

H 72
e 101
l 108
o 111

def base_128_hash(s, start, stop):
”””Hash s[start:stop] by interpreting as ASCII base 128”””
p = 0
total = 0
while stop > start:

total += ord(s[stop-1]) * 128**p
p += 1
stop -= 1

return total

Rolling Hashes

▶ We can hash a string x by interpreting it as a
number in a different base number system.

▶ But hashing takes time Θ(|𝑥|).

▶ With rolling hashes, it will take time Θ(1) to
“update”.

Example

▶ Hash of “Hel” in
“Hello”

▶ Hash of “ell” in
“Hello”

character ASCII code

H 72
e 101
l 108
o 111

“Updating” a Rolling Hash
▶ Start with old hash, subtract character to be removed.
▶ “Shift” by multiplying by 128.
▶ Add new character.
▶ Takes Θ(1) time.

def update_base_128_hash(s, start, stop, old):
assumes ASCII encoding, base 128
length = stop - start
removed_char = ord(s[start - 1]) * 128**(length - 1)
added_char = ord(s[stop - 1])
return (old - removed_char) * 128 + added_char

»> base_128_hash(”Hello”, 0, 3)
1192684
»> base_128_hash(”Hello”, 1, 4)
1668716
»> update_base_128_hash(”Hello”, 1, 4, 1192684)
1668716

Note

▶ In this hashing strategy, there are no collisions!

▶ Two different string have two different hashes.

▶ But as we’ll see... it isn’t practical.

Rabin-Karp
def rabin_karp(s, p):

hashed_window = base_128_hash(s, 0, len(p), q)
hashed_pattern = base_128_hash(p, 0, len(p), q)
match_locations = []

if s[0:len(p)] == p:
match_locations.append(0)

for i in range(1, len(s) - len(p) + 1):
update the hash
hashed_window = update_base_128_hash(s, i, i + len(p), hashed_window)

hashes are unique; no collisions
if hashed_window == hashed_pattern:

match_locations.append(i)

return match_locations

Example

▶ s = ”this is a test”,
p = ”is”

▶
hashed_pattern = 13555

i s[...] hashed_window

0 ”th” 14952
1 ”hi” 13417
2 ”is” 13555
3 ”s ” 14752
4 ” i” 4201
5 ”is” 13555
6 ”s ” 14752
7 ” a” 4193
8 ”a ” 12448
9 ” t” 4212
10 ”te” 14949
11 ”es” 13043
12 ”st” 14836

Large Numbers

▶ Hashing because integer comparison takes Θ(1)
time.

▶ Only true if integers are small enough.

▶ Our integers can get very large.

128|𝑝|−1

Example
»> p = ”University of California”
»> base_128_hash(p, 0, len(p))
250986132488946228262668052010265908722774302242017

Large Integers

▶ In some languages, large integers will overflow.

▶ Python has arbitrary size integers.

▶ But comparison no longer takes Θ(1)

Solution

▶ Use modular arithmetic.

▶ Example:
(4 + 7) % 3 = 11 % 3 = 2

▶ Results in much smaller numbers.

Idea

▶ Choose a random prime number > |𝑚|.

▶ Do all arithmetic modulo this number.

def base_128_hash(s, start, stop, q):
”””Hash s[start:stop] by interpreting as ASCII base 128”””
p = 0
total = 0
while stop > start:

total = (total + ord(s[stop-1]) * 128**p) % q
p += 1
stop -= 1

return total

def update_base_128_hash(s, start, stop, old, q):
assumes ASCII encoding, base 128
length = stop - start

removed_char = ord(s[start - 1]) * 128**(length - 1)
added_char = ord(s[stop - 1])

return ((old - removed_char) * 128 + added_char) % q

Note

▶ Now there can be collisions!

▶ Even if window hash matches pattern hash, need
to verify that strings are indeed the same.

def rabin_karp(s, p, q):
hashed_window = base_128_hash(s, 0, len(p), q)
hashed_pattern = base_128_hash(p, 0, len(p), q)
match_locations = []

if s[0:len(p)] == p:
match_locations.append(0)

for i in range(1, len(s) - len(p) + 1):
update the hash
hashed_window = update_base_128_hash(s, i, i + len(p), hashed_window, q)

if hashed_window == hashed_pattern:
make sure this isn't a false match due to collision
if s[i:i + len(p)] == p:

match_locations.append(i)

return match_locations

Time Complexity
▶ If 𝑞 is prime and > |𝑝|, the chance of two different strings
colliding is small.

▶ From before: if the number of matches is small,
Rabin-Karp will take Θ(|𝑠| + |𝑝|) expected time.

▶ Since |𝑝| ≤ |𝑠|, this is Θ(𝑠).

▶ Worst-case time: Θ(|𝑠| ⋅ |𝑝|).

