DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 17 | Part 1

Today's Lecture

Massive Sets

- You've collected 1 billion tweets.¹
- ► **Goal**: given the text of a new tweet, is it already in the data set?

¹This is about two days of activity.

Membership Queries

- We want to perform a membership query on a collection of strings.
- ightharpoonup Hash tables support $\Theta(1)$ membership queries.
- Idea: so let's use a hash table (Python: set).

Problem: Memory

- How much memory would a set of 1 billion strings require?
- Assume average string has 100 ASCII characters.
 (8 bits per char)×(100 chars)×1 billion = 100 gigabytes
- That's way too large to fit in memory!

Today's Lecture

► **Goal**: fast membership queries on massive data sets.

► Today's answer: **Bloom filters**.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 17 | Part 2

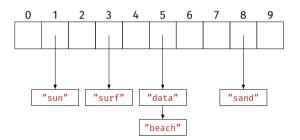
Bit Arrays

The Challenge

- We want to perform membership queries on a massive collection (too large to fit in memory).
- We want to remember which elements are in the collection...

- ...without actually storing all of the elements.
- From hash tables to Bloom filters in 3 steps.

First Stop: Hash Tables



S	hash(s)						
"surf" "sand" "data" "sun" "beach"	3 8 5 1 5						

Memory Usage

Problem: we're storing all of the elements.

► Why? To resolve collisions.

Fix: ignore collisions.

Second Stop: Hashing Into Bit Arrays

	1								
0	1	0	1	0	1	0	0	1	0

S	hash(s)							
"surf"	3							
"sand"	8							
"data"	5							
"sun"	1							
"beach"	5							

- Use a bit array arr of size c.
- Insertion: Set
 arr[hash(x)] = 1.
- Query: Check if arr[hash(x)] = 1.

Second Stop: Hashing Into Bit Arrays

0	1	2	3	4	5	6	7	8	9
0	1	0	1	0	1	0	0	1	0

S	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5

- Use a bit array arr of size c.
- Insertion: Set
 arr[hash(x)] = 1.
- Query: Check if arr[hash(x)] = 1.
- Can be wrong!

False Positives

0	1	2	3	4	5	6	7	8	9
0	1	0	1	0	1	0	0	1	0

S	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5

Query can return false positives.

```
e.g.,
hash("ucsd") == 3
```

Cannot return false negatives.

Memory Usage

- Requires c bits, where c is size of the bit array.
- False positive rate depends on c.
 - \triangleright c is small \rightarrow more collisions \rightarrow more errors
 - \triangleright c is large \rightarrow fewer collisions \rightarrow fewer errors

Tradeoff: get more accuracy at cost of memory.

- What is the probability of a false positive?
- Suppose there are c buckets, and we've inserted n elements so far.

We query an object x that we haven't seen before.

► False positive \Leftrightarrow arr[hash(x)] == 1.

- Assume hash assigns bucket uniformly at random.
 - ► If $x \neq y$ then, $\mathbb{P}(\text{hash}(x) = \text{hash}(y)) = 1/c$
- Prob. that first element does not collide with x: 1 - 1/c.
- ▶ Prob. that first two do not collide: $(1 1/c)^2$.
- Prob. that all n elements do not collide: $(1 1/c)^n$.

- ► Hint: for large z, $(1 1/z)^z \approx \frac{1}{e}$
- So the probability of no collision is:

$$(1-1/c)^n = [(1-1/c)^c]^{n/c} \approx e^{-n/c}$$

- ► This is the probability of no false positive.
- Probability of false positive upon querying x: $\approx 1 - e^{-n/c}$

- For fixed query, probability of false positive:
 - $\approx 1 e^{-n/c}$
 - n: number of elements stored
 - c: size of array (number of bits)
- Randomness is over choice of hash function.
 - Once hash function is fixed, the result is always the same.

Fixing False Positive Rate

- \triangleright Suppose we'll tolerate false positive rate of ε .
- Assume that we'll store around *n* elements.

► We can choose *c*:

$$1 - e^{-n/c} = \varepsilon \implies c = -\frac{n}{\ln(1 - \varepsilon)}$$

Example

- Suppose we want ≤ 1% error.
- Previous slide says our bit array needs to be 100 times larger than number of elements stored.²
- Memory when $n = 10^9$: 1 billion bits ×100 = 12.5 GB.

Can we do better?

²We could have guessed this, huh?

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 17 | Part 3

Bloom Filters

Wasted Space

- Suppose we want ≤ 1% error.
- Our bit array needs to be 100 times larger than number of elements stored.

That's a lot of wasted space!

Third Stop: Multiple Hashing

► **Idea**: use several smaller bit arrays, each with own hash function.

Third Stop: Multiple Hashing

0	1	2	3	4	5	6	7	8	9
0	1	0	1	0	1	0	0	1	0
0	1	2	3	4	5	6	7	8	9
0	0	0	0	1	0	1	1	0	1

_								
	s	hash_1(s)	hash_2(s)					
	"surf"	3	7					
	"sand"	8	7					
	"data"	5	4					
	"sun"	1	9					
	"beach"	5	6					

Use k bit arrays of size c, each with own independent hash function.

```
Insertion: Set
   arr_1[hash_1(x)] = 1,
   arr_2[hash_2(x)] = 1,
   ...,
   arr_k[hash_k(x)] = 1.
```

Third Stop: Multiple Hashing

0	1	2	3	4	5	6	7	8	9
0	1	0	1	0	1	0	Θ	1	0
0	1	2	3	4	5	6	7	8	9
0	0	0	0	1	0	1	1	0	1

S	hash_1(s)	hash_2(s)					
"surf"	3	7					
"sand"	8	7					
"data"	5	4					
"sun"	1	9					
"beach"	5	6					

- Use k bit arrays of size c, each with own independent hash function.
- Query: Return True if
 all of
 arr_1[hash_1(x)] = 1,
 arr_2[hash_2(x)] = 1,
 ...,
 arr_k[hash_k(x)] = 1.
 - Example:
 hash_1("hello") == 3,
 hash_2("hello") == 2

Intuition

False positive occurs only if false positive in all tables.

- This is pretty unlikely.
- If false positive rate in one table is small (but not tiny), probability false positive in all tables is still tiny.

More Formally

Probability of false positive in first table: $\approx 1 - e^{-n/c}$.

- Probability of false positive in all k tables: $\approx (1 e^{-n/c})^k$.
- Example: if c = 4n and k = 3, error rate is $\approx 1\%$.
- Uses only 12 × n bits, as opposed to 100 × n from before.

Last Stop: Bloom Filters

- ► How many different bit arrays do we use? (What is *k*?)
- ► How large should they be? (What is *c*?)
- ▶ **Bloom filters**: use *k* hash functions, but only one medium-sized array.

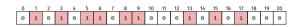
Last Stop: Bloom Filters

	1																			
0	1	0	1	0	1	1	0	1	1	0	0	0	1	0	1	0	1	0	0	0

s	hash_1(s)	hash_2(s)
"surf"	13	17
"sand"	8	6
"data"	15	1
"sun"	1	3
"beach"	5	9

- Use one bit arrays of size *c*, but *k* hash functions.
- Insertion: Set
 arr[hash_1(x)] = 1,
 arr[hash_2(x)] = 1,
 ...,
 arr[hash_k(x)] = 1.

Last Stop: Bloom Filters



s	hash_1(s)	hash_2(s)
"surf"	13	17
"sand"	8	6
"data"	15	1
"sun"	1	3
"beach"	5	9

- Use one bit arrays of size c, but k hash functions.
- Query: Return True if
 all of
 arr[hash_1(x)] = 1,
 arr[hash_2(x)] = 1,
 ...,
 arr[hash_k(x)] = 1.
- Example:
 hash_1("hello") == 3,
 hash_2("hello") == 2

Intuition

- Multiple hashing allows bit arrays to be smaller.
- Even more efficient: let them share memory.
- "Overlaps" are just collisions; we can handle them.

- Consider querying new, unseen object x.
- ► We'll look at k bits.
 - ightharpoonup arr[hash_1(x)], ..., arr[hash_k(x)].
- Fix one bit. What is the chance that it is already one?

- ▶ Probability of bit being zero after first element inserted: (1 – 1/c)^k
- ► After second element inserted: $(1 1/c)^{2k}$
- After all *n* elements inserted: $(1 1/c)^{nk}$
- ► And:

$$(1-1/c)^{nk} = [(1-1/c)^c]^{nk/c} \approx e^{-nk/c}$$

Probability of bit being **one** after *n* elements inserted:

$$1 - e^{-nk/c}$$

- For a false positive, all *k* bits (for each hash function) need to be one.
- Assuming independence,³ probability of false positive:

$$(1 - e^{-nk/c})^k$$

³Only true approximately. If this bit was set, some other bit was not.

Minimizing False Positives

For a fixed *n* and *c*, the number of hash functions *k* which minimizes the false positive rate is

$$k = \frac{c}{n} \ln 2$$

Plugging this into the error rate:

$$\varepsilon = (1 - e^{-nk/c})^k \implies \ln \varepsilon = -\frac{c}{n} (\ln 2)^2$$

If we fix ε , then $c = -n \ln \varepsilon / (\ln 2)^2$

Summary: Designing Bloom Filters

- Suppose we wish to store n elements with ε false positive rate.
- Allocate a bit array with $c = -n \ln \varepsilon / (\ln 2)^2$ bits.
- Pick $k = \frac{c}{n} \ln 2$ hash functions.

Example

- Let $n = 10^9$, ε = 0.01.
- ▶ We need $c \approx 9.5n \rightarrow 10n$ bits = 1.25 GB.
- ► We choose $k = \frac{9.5n}{n} \ln 2 \rightarrow 7$ hash functions.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 17 | Part 4

Bloom Filters in Practice

Applications

A cool data structure.

Most useful when data is huge or memory is small.

- De-duplicate 1 billion strings, each about 100 bytes.
- Memory required for set: 100 gigabytes.
- Instead:
 - Loop through data, reading one string at a time.
 - ▶ If not in Bloom filter, write it to file.
- ▶ With 1% error rate, takes 1.25 GB.

A *k*-mer is a substring of length *k* in a DNA sequence:

"GATTACATATAGGTGTCGA"

- ▶ Useful: does a long string have a given *k*-mer?
- ▶ There are a *massive* number of possible *k*-mers.
 - \triangleright 4^k, to be precise.
 - Example: there are over 10¹⁸ 30-mers.
- ► Slide window of size *k* over sequence, store each substring in Bloom filter.

► Human genome is a 725 Megabyte string, 2.9 billion characters.

- ► To store all *k*-mers, each character stored *k* times.
- Storing 30-mers in set would take 30 x 725 MB ≈ 22 GB.
- By "forgetting" the actual strings, Bloom filter (1% false positive) takes

- Suppose you have a massive database on disk.
- Querying the database will take a while, since it has to go to disk.
- Build a Bloom filter, keep in memory.
 - ► If Bloom filter says *x* not in database, don't perform query.
 - Otherwise, perform DB query.
- Speeds up time of "misses".

Limits

- Bloom filters are useful in certain circumstances.
- But they have disadvantages:
 - Need good idea of size, n, ahead of time.
 - There are false positives.
 - ▶ The elements are not stored (can't iterate over them).
- Often a set does just fine, with some care.

Example

- Suppose you have 1 billion tweets.
- Want to de-duplicate them by tweet ID (64 bit number).
- ► Total size: 8 gigabytes.
- ▶ I have 4 GB RAM. Should I use a Bloom filter?

De-duplication Strategy

- Design a hash function that maps each tweet ID to {1,...,8}.
- Loop through tweet IDs one-at-a-time, hash, write to file:

```
hash(x) == 3 \rightarrow write to data_3.txt
```

Read in each file, one-at-a-time, de-duplicate with set, write to output.txt