DSC /70

DATA STRUCTURES § ALLoRITHMS
Lecture 18 Part 1

The Count-Min Sketch

Last Time: Membership Queries

You've collected 1 billion tweets."

Goal: given the text of a new tweet, is it already
in the data set?

Data set is too large to fit into memory.

Our solution: Bloom filters.

"This is about two days of activity.

Today: Frequencies
You've collected 1 billion tweets.

Goal: given the text of a tweet, how many times
have we seen it?

Data set is too large to fit into memory.

Today's solution: the Count-Min Sketch.

Frequency Counts
Given: a collection X = {xq, X, ..., X, }-

Support:
.count(x): Number of times x appears.
.increment(x): Increment count of x

Simple Solution

Use hash tables: dictionary of counts.

class SetCounts:

def __init__(self):
self.counts = {}

def increment(self, x):
if x not in self.counts:
self.counts[x] = 1
else:
self.counts[x] += 1

def count(self, x):
try:
return self.counts[x]
except KeyError:
return o

Problem: Memory Usage

Requires storing the keys.

Example: store approximately 1 billion tweets
(100 GB).

Can't fit the dictionary in memory.

A Fix
Why do we store all of the keys?

To resolve collisions.

What if we ignore collisions?

Hashing Into Counters

Use a size ¢ (c < n) array

of integers (counts).

"data”
hash(s) "surf” .increment(x):
S asnts "sand” arr[hash(x)] += 1
"Surf" 3 ”SUI“F"
"sand” 8 "surf” .count(x):
"data” 5 "beach” return arr[hash(x)]
"sun” 1 "data”
"beach” 5 "beach”
"surf”

”SUn"

Hashing Into Counters

Use a size ¢ (c < n) array

of integers (counts).

"data”
"surf” .increment(x):
s hash(s) "sand” arr[hash(x)] += 1
"Surf" 3 ’,Surf"
"sand” 8 "surf” .count(x):
"data” 5 "beach” return arr[hash(x)]
"sun” 1 "data”
beach 5 "beach Can be wrong!
surf

”SUn"

Biased Estimate

The count returned from this approach is biased
high.

Can we do better?

Idea: multiple hashing. Perform previous R
times.

This is the count-min sketch.

Count-Min Sketch

Use k arrays of counts,
each with own
independent hash

functions.
"data” . () Set
"surf” .1ncrement(x): Se
hash_1 hash_2

s ash_1(s) ash_2(s) "eand” arr_1[hash_1(x)] += 1,
"surf” 3 7 "surf” arr_2[hash_2(x)] R
"sand” 8 7 "surf” n
" " "heach”
ngiﬁi ? g "data” arr_k[hash_k(x)] += 1.
"beach” 5 6 "beach”

"surf”

"sun”

Count-Min Sketch

0 1 2 3 4 5 6 71 8 9 Use k arrays of counts,
each with own
independent hash

functions.

"data”
s hash_1(s) hash_2(s) z:;g .count(x): Return the

" " minimum of
"surf” 3 7 surf
"sand” 8 7 "surf” arr_i[hash_1(x)],
"data” 5 4 "beach” arr_2[hash_2(x)1, ..,
"sun” 1 9 "data” arr_k[hash_k(x)].
"beach” 5 6 "beach”

"surf”

"sun”

Returning the Minimum Count
The count is still biased high.

But by returning the minimum, bias is reduced.

Memory Usage
Each counter cell stores an integer (64 bits).

Total size:
64 x C - R bits

c and Rk should be chosen to match prescribed
level of error.

DPSC /70

DATA STRUCTURES % ALLoRITHMS
Lecture 18 @ Part 2

Designing a Count-Min Sketch

Error Rate

Count-min sketch is a probabilistic data

structure.
Returns the wrong answer sometimes.

How wrong is it, probably?

And how does this depend on c and R?

Notation

We see n items, record frequencies in count-min
sketch.

For any item x, let f, be its true frequency.
f = arr_i[hash_i(x)] is estimated frequency
of x according to row i. f, is aggregate estimate:

fx = minif)(<i)'

Note: fi) > f,

Absolute and Relative Error

Absolute error: fx - i
This will grow as collection size n — oo.

Relative error: (f, - f,)/f
We're more interested in this. Want it to be small.

If f, = ©(n), we want:

(fo-foln<e = f,-f,<en

Analyses

We'll first look at the expected value of the
estimate in a single row.

Then, we'll compute the probability that the
aggregate estimate is much larger than the true
value.

Expected Value
Fix an object, x, and a row i.
E[f{] = expected count in x's bin

= f, + E[tot. frequency of colliding items y # x]

= f, + ny- P(hash(y) == hash(x))

y#X

=fx+%zfy5fx+%

y#X

Expected Value
We found: E[f{)] < f, + 2.

Is this good or bad?
Suppose f, = p,n, where p, €[0,1].

Absolute error is ©(n).
But relative error is 7.

Independent of n!

Extreme Values

Goal: show unlikely for f to be much larger
than f,

Let's find a st. P(f) - f_>a) < 1/2. Then:

Ef12 fyv a- PP - £ > @)
=fx+al2

We know E[f{)] < f, + 2, s0 a < 2n/c.

Extreme Values
We've shown that P(f{) - f, > 2n/c) < 1/2.
This is just for the ith row.
Minimum is > 2n/c only if every row is > 2n/c.

Probability of this happening:

1=1

ﬁ P(fi) - f, >2n/c) < (%)k

Extreme Values

Let fx be the aggregate estimate. We have shown:
- 1\R
P(f, - f, > 2n/c) < (i)

Want fx -f, <& Setc=2/¢.

To ensure that an over-estimate larger than ¢
occurs with probability 6, set
1

(§)k=6 — k=log, ¢

Designing a Count-Min Sketch

Pick your € and 6: “I want overestimates to be
smaller than €n at least 1 - 6 percent of the time!

?

Set number of bucketsto c = 2/¢

Set number of rows/hash functions to
k = log, 1/6.

Example

We have 1 billion tweets, want to count number
of occurrences for each.

Assume each tweet requires 800 bits.

dict: around 100 gigabytes, assuming = 1 billion
unique

Example

Instead, use a count-min sketch. Say, € =.001
and 6 =.01.

c=2/e=2000
kR=1log,1/6=7.

Memory: 7 x 2000 x 64 bits = 112Rilobytes

Example
Now supposed you have 42 quadrillion tweets.
dict: 4.2 exabytes

count-min sketch: 112 kilobytes

How?

The relative error € of a count-min sketch does
not depend on n!

The n is “hidden” inside the relative error:

~

fx_fx<£n

Count-Min Sketch and Bloom Filters

The Count-Min Sketch and Bloom Filters are both
probabilistic data structures.

Both make use of multiple hashing.

Why does CMS take much less memory?

Less Memory

Why does a CMS use less memory than a Bloom
filter?

The problem it is solving is easier.

Bloom filter: big difference between seeing an
element once and never seeing it.

Count-Min sketch: essentially no difference.

