
Lecture 19 | Part 1

Complexity Theory

The quest for efficient algorithms is about
finding clever ways to avoid taking exponen-
tial time. So far we have seen the most bril-
liant successes of this quest; now we meet
the quest’s most embarrassing and persistent
failures.
- paraphrased from Algorithms by Dasupta, Papadimitriou,

Vazirani

Exponential to Polynomial

▶ Many problems have brute force solutions which
take exponential time.

▶ Example: clustering to maximize separation

▶ The challenge of algorithm design: find a more
efficient solution.

Polynomial Time

▶ If an algorithm’s worst case time complexity is
𝑂(𝑛𝑘) for some 𝑘, we say that it runs in
polynomial time.

▶ Example: Θ(𝑛 log 𝑛), since 𝑛 log 𝑛 = 𝑂(𝑛2).

▶ Polynomial is much faster than exponential for
big 𝑛.

▶ But not necessarily for small 𝑛.
▶ Example: 𝑛100 vs 1.0001𝑛.

▶ We therefore think of polynomial as “efficient”.

Question

▶ Is every problem solvable in polynomial time?

▶ No! Problem: print all permutations of 𝑛
numbers.

▶ No! Problem: given 𝑛 × 𝑛 checkerboard and
current pieces, determine if red can force a win.

Question

▶ Is every problem solvable in polynomial time?

▶ No! Problem: print all permutations of 𝑛
numbers.

▶ No! Problem: given 𝑛 × 𝑛 checkerboard and
current pieces, determine if red can force a win.

Question

▶ Is every problem solvable in polynomial time?

▶ No! Problem: print all permutations of 𝑛
numbers.

▶ No! Problem: given 𝑛 × 𝑛 checkerboard and
current pieces, determine if red can force a win.

Ok, then...

▶ What problems can be solved in polynomial
time?

▶ What problems can’t?

▶ How can I tell if I have a hard problem?

▶ Core questions in computational complexity
theory.

Ok, then...

▶ What problems can be solved in polynomial
time?

▶ What problems can’t?

▶ How can I tell if I have a hard problem?

▶ Core questions in computational complexity
theory.

Lecture 19 | Part 2

Eulerian and Hamiltonian Cycles

Example: Bridges of Königsberg

▶ Problem: Is it possible to start and end at same
point while crossing each bridge exactly once?

Leonhard Euler

1707 - 1783

Eulerian Cycle

Is there a cycle which uses each edge exactly once?

Necessary conditions

▶ Graph must be connected.

▶ Each node must have even degree.

▶ Answer for Königsberg answer: it is impossible.

In General...

▶ These conditions are necessary and sufficient.

▶ A graph has a Eulerian cycle if and only if:
▶ it is connected;
▶ each node has even degree.

Exercise

Can we determine if a graph has an Eulerian cycle
in time that is polynomial in the number of nodes?

Answer

▶ We can check if it is connected in Θ(𝑉 + 𝐸) time.

▶ Compute every node’s degree in Θ(𝑉) time with
adjacency list.

▶ Total: Θ(𝑉 + 𝐸) = 𝑂(𝑉2). Yes!

Gaming in the 19th Century

I have found that some young persons have
been much amused by trying a new mathe-
matical game which the Icosian furnishes [...]

- W.R. Hamilton, 1856

Hamiltonian Cycles

▶ A Hamiltonian cycle is a cycle which visits each
node exactly once (except the starting node).

▶ Game: find a Hamiltonian cycle on the graph
below:

Exercise

Can we determine whether a general graph has a
Hamiltonian cycle in polynomial time?

Some cases are easy

1

2

3

4

5

6

7

In General

▶ Could brute-force.

▶ How many possible cycles are there?

Hamiltonian Cycles are Difficult

▶ This is a very difficult problem.

▶ No polynomial algorithm is known for general
graphs.

▶ In special cases, there may be a fast solution.
But in general, worst case is hard.

Note

▶ Determining if a graph has a Hamiltonian cycle is
hard.

▶ But if we’re given a “hint” (i.e., (𝑣1, 𝑣2, … , 𝑣𝑛) is
possibly a Hamiltonian cycle), we can check it
very quickly!

▶ Hard to solve; but easy to verify “hints”.

Similar Problems

▶ Eulerian: polynomial algorithm, “easy”.

▶ Hamiltonian: no polynomial algorithm known,
“hard”.

Main Idea

Computer science is littered with pairs of similar
problems where one easy and the other very hard.

Lecture 19 | Part 3

Shortest and Longest Paths

Problem: ShortPath

▶ Input: Graph1 𝐺, source 𝑢, dest. 𝑣, number 𝑘.

▶ Problem: is there a path from 𝑢 to 𝑣 of length
≤ 𝑘?

▶ Solution: BFS or Dijkstra/Bellman-Ford in
polynomial time.

▶ Easy!
1Weighted with no negative cycles, or unweighted.

Problem: LongPath
▶ Input: Graph2 𝐺, source 𝑢, dest. 𝑣, number 𝑘.

▶ Problem: is there a simple path from 𝑢 to 𝑣 of length
≥ 𝑘?

▶ Naïve solution: try all 𝑉! path candidates.

2Weighted or unweighted.

Long Paths

▶ There is no known polynomial algorithm for this
problem.

▶ It is a hard problem.

▶ But given a “hint” (a possible long path), we can
verify it very quickly!

Lecture 19 | Part 4

Reductions

Reductions

▶ Hamiltonian and LongPath are related.

▶ We can “convert” Hamiltonian into LongPath in
polynomial time.

▶ We say that Hamiltonian reduces to LongPath.

Reduction

▶ Suppose we have an algorithm for LongPath.

▶ We can use it to solve Hamiltonian as follows:

𝑢

𝑣

▶ Pick arbitrary node 𝑢.
▶ For each neighbor 𝑣 of 𝑢:

▶ Create graph 𝐺′ by copying 𝐺, deleting
(𝑢, 𝑣)

▶ Use algorithm to check if a simple path
of length ≥ |𝑉| − 1 from 𝑢 to 𝑣 exists in 𝐺′.

▶ If yes, then there is a Hamiltonian cycle.

Reductions

▶ If Problem A reduces3 to Problem B, it means “we
can solve A by solving B”.

▶ Best possible time for A ≤ best possible time for
B + polynomial

▶ “A is no harder than B”

▶ “B is at least as hard as A”
3We’ll assume reduction takes polynomial time.

Relative Difficulty

▶ If Problem 𝐴 reduces to Problem 𝐵, we say 𝐵 is at
least as hard as 𝐴.

▶ Example: Hamiltonian reduces to LongPath.
LongPath is at least as hard as Hamiltonian.

Lecture 19 | Part 5

P ?= NP

Decision Problems

▶ All of today’s problems are decision problems.
▶ Output: yes or no.
▶ Example: Does the graph have an Euler cycle?

P

▶ Some problems have polynomial time
algorithms.

▶ ShortPath, Euler

▶ The set of decision problems that can be solved
in polynomial time is called P.

▶ Example: ShortPath and Euler are in P.

NP

▶ The set of decision problems with “hints” that
can be verified in polynomial time is called NP.

▶ All of today’s problems are in NP.
▶ All problems in P are also in NP.

▶ Example: ShortPath, Euler, Hamiltonian,
LongPath are all in NP.

P ⊂ NP

▶ P is a subset of NP.

▶ It seems like some problems in NP aren’t in P.
▶ Example: Hamiltonian, LongPath.

▶ We don’t know polynomial time algorithms for
these problems.

▶ But that doesn’t such an algorithm is impossible!

P = NP?

▶ Are there problems in NP that aren’t in P?
▶ That is, is P ≠ NP?

▶ Or is any problem in NP also in P?
▶ That is, is P = NP?

P ≠ NP

NP

P

Euler

ShortPath

Hamiltonian

LongPath

P = NP

P=NP

Euler

ShortPath

Hamiltonian

LongPath

P = NP?

▶ Is P = NP?

▶ No one knows!

▶ Biggest open problem in Math/CS.4

▶ Most think P ≠NP.

4If you solve it, you’ll be rich and famous.

P = NP?

▶ Is P = NP?

▶ No one knows!

▶ Biggest open problem in Math/CS.4

▶ Most think P ≠NP.

4If you solve it, you’ll be rich and famous.

What if P = NP?

▶ Possibly Earth-shattering.
▶ Almost all cryptography instantly becomes obsolete;
▶ Logistical problems solved exactly, quickly;
▶ Mathematicians become obsolete.

▶ But maybe not...
▶ Proof could be non-constructive.
▶ Or, constructive but really inefficient. E.g., Θ(𝑛10000)

Lecture 19 | Part 6

NP-Completeness

Problem: 3-SAT

▶ Suppose x_1, … , x_n are boolean variables
(True,False)

▶ A 3-clause is a combination made by or-ing and
possibly negating three variables:
▶ x_1 or x_5 or (not x_7)
▶ (not x_1) or (not x_2) or (not x_4)

Problem: 3-SAT

▶ Given: 𝑚 clauses over 𝑛 boolean variables.

▶ Problem: Is there an assignment of x_1, … , x_n
which makes all clauses true simultaneously?

▶ No polynomial time algorithm is known.

▶ But it is easy to verify a solution, given a hint.
▶ 3-SAT is in NP.

Cook’s Theorem

Every problem in NP is polynomial-time reducible to
3-SAT.

▶ ...including Hamiltonian, long path, etc.
▶ 3-SAT is at least as hard as every problem in NP.
▶ “hardest problem in NP”

Cook’s Theorem (Corollary)

▶ If 3-SAT is solvable in polynomial time, then all
problems in NP are solvable in polynomial time.

▶ ...including Hamiltonian, long path, etc.

NP-Completeness

▶ We say that a problem is NP-complete if:
▶ it is in NP;
▶ every problem in NP is reducible to it.

▶ Hamiltonian, LongPath, 3-SAT are all
NP-complete.

▶ NP-complete problems are the “hardest” in NP.

Equivalence

▶ In some sense, NP-complete problems are
equivalent to one another.

▶ E.g., a fast algorithm for Hamiltonian gives a fast
algorithm for 3-SAT, LongPath, and all problems
in NP.

Who cares?

▶ Complexity theory is a fascinating piece of
science.

▶ But it’s practically useful, too, for recognizing
hard problems when you stumble upon them.

Lecture 19 | Part 7

Hard Optimization Problems

Hard Optimization problems

▶ NP-completeness refers to decision problems.

▶ What about optimization problems?

▶ We can typically state a similar decision problem.

▶ If that decision problem is hard, then
optimization is at least as hard.

Problem: bin packing

▶ Optimization problem:
▶ Given: bin size 𝐵, 𝑛 objects of size 𝛼1, … , 𝛼𝑛..
▶ Problem: find minimum number of bins 𝑘 that can
contain all 𝑛 objects.

▶ Decision problem version:
▶ Given: bin size 𝐵, 𝑛 objects of size 𝛼1, … , 𝛼𝑛, integer 𝑘.
▶ Problem: is it possible to pack all 𝑛 objects into 𝑘
bins?

▶ Decision problem is NP-complete, reduces to
optimization problem.

Example: traveling salesperson

▶ Optimization problem:
▶ Given: set of 𝑛 cities, distances between each.
▶ Problem: find shortest Hamiltonian cycle.

▶ Decision problem:
▶ Given: set of 𝑛 cities, distance between each, length ℓ.
▶ Problem: is there a Hamiltonian cycle of length ≤ ℓ?

▶ Decision problem is NP-complete, reduces to
optimization problem.

NP-complete problems in machine
learning

▶ Many machine learning problems are
NP-complete.

▶ Examples:
▶ Finding a linear decision boundary to minimize
misclassifications in non-separable regime.

▶ Minimizing 𝑘-means objective.

So now what?

▶ Just because a problem is NP-Hard, doesn’t
mean you should give up.

▶ Usually, an approximation algorithm is fast,
“good enough”.

▶ Some problems are even hard to approximate.

Summary

▶ Not every problem can be solved efficiently.

▶ Computer scientists are able to categorize these
problems.

Lecture 19 | Part 8

The Halting Problem

Really hard problems

▶ Some decision problems are harder than others.

▶ That is, it takes more time to solve them.

▶ Given enough time, all decision problems can be
solved, right?

Alan Turing

1912-1954

Turing’s Halting Problem

▶ Given: a function f and an input x.

▶ Problem: does f(x) halt, or run forever?

▶ Algorithm must work for all functions/inputs!

Turing’s Argument

▶ Turing says: no such algorithm can exist.

▶ Suppose there is a function halts(f, x):
▶ Returns True if f(x) halts.
▶ Returns False if f(x) loops forever.

Turing’s Argument

▶ Consider evil_function.
▶ If it halts, it doesn’t.
▶ If it doesn’t halt, it does.

▶ Contradicts claim that halt
works.

def evil_function(f):
if halts(f, f):

loop forever
else:

return

Undecidability

▶ The halting problem is undecidable.

▶ Fact of the universe: there can be no algorithm
for solving it which works on all
functions/inputs.

▶ All of these problems are undecidable:
▶ Does the program terminate?
▶ Does this line of code ever run?
▶ Does this function compute what its specification
says?

The End

