DSC 190 Machine Learning: Representations

Lecture 1 | Part 1

Introduction

Welcome to DSC 190

Introduction to Machine Learning: Representations

History

You've had two classes in ML already...

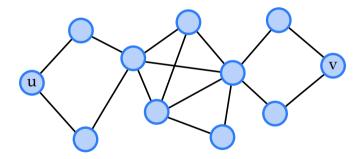
DSC 40A (theory)

▶ DSC 80 (practice)

What is Machine Learning?

- Computers can do things very quickly.
- But must be given really specific instructions.
- **Problem**: Not all tasks are easy to dictate.

Example (Easy)



Problem: Find a shortest path between *u* and *v*.

Example (Not so easy)

Problem: On a scale from 1-10, how happy is this person?

The Trick: Use Data

?

What is Machine Learning?

Before: Computer is told how to do a task.

Instead: learn how to do a task using data.

What is Machine Learning?

Before: Computer is told how to do a task.

- Instead: learn how to do a task using data.
- We still have to tell the computer how to learn.

An **ML algorithm** is a set of precise instructions telling the computer **how to learn** from data.

An **ML algorithm** is a set of precise instructions telling the computer **how to learn** from data.

Spoiler: the algorithms are usually pretty simple. It's the **data** that does the real work.

An **ML algorithm** is a set of precise instructions telling the computer **how to learn** from data.

Spoiler: the algorithms are usually pretty simple. It's the **data** that does the real work.

This is because real world data has "structure".

Problem: On a scale from 1-10, how happy is this person?

Exercise
What kind of learning task is this (e.g., classifica- tion)? What learning algorithm(s) have you heard of for this kind of task?

Recall: Least Squares Regression

- Example: predict the price of a laptop.
- Choose some features:
 - CPU speed, amount of RAM, weight (kg).
- Prediction function (weighted "vote"):

(price) = $w_0 + w_1 \times (cpu) + w_2 \times (ram) + w_3 \times (weight)$

Learn w_i by minimizing squared error.

Representations

- Computers don't understand the concept of a laptop.
- We had to represent a laptop as a set of features.
 CPU speed, amount of RAM, weight (kg).
- Clearly, choosing right feature representation is important.

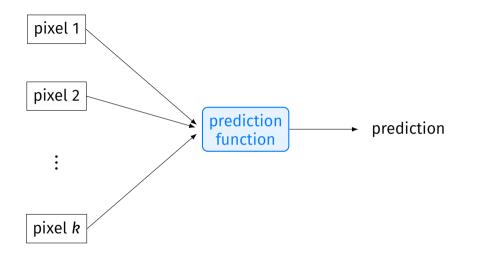
Now: Predict Happiness

- Given an image, predict happiness on a 1-10 scale.
- This is a regression problem.
- Can we use least squares regression?

Problem

- Computers don't understand images.
- How do we represent them?
- Easy approach: a bag of pixels.
 - **Each** pixel has an numerical **intensity**.
 - Each pixel is a feature.
 - In this way, an image is represented as a vector in some high dimensional space.

Least Squares for Happiness



Exercise

Say we train a least squares regression model on a set of images to predict happiness. We achieve a mean squared error of M_1 .

Now we scramble every image's pixels in exactly the same way (same transformation of each image). We retrain, and achieve MSE of M_2 .

Which is true:

$$M_1 < M_2$$

 $M_1 = M_2$
 $M_1 > M_2$

Answer

- The regression model will work just as well if the images are all scrambled in exactly the same way.
- This is because the model doesn't use the proximity of pixels.
- The representation (each pixel is a feature) does not capture this.

Exercise

Say we train a least squares regression model on a set of images to predict happiness. We achieve a mean squared error of M_1 .

Now we scramble every image's pixels independently. We retrain, and achieve MSE of M_2 .

Which is true:

$$M_1 < M_2$$

 $M_1 = M_2$
 $M_1 > M_2$

Happiness: it's in the Pixels

- The information is contained in the image... but not in individual pixels.
- In patterns of pixels:
 - The shape of the eyebrows.
 - Angle of the corners of the mouth.
 - Are teeth visible?

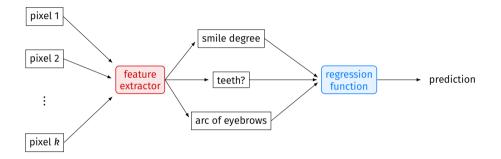
The representation is too simple – probably won't work well¹.

¹On this example! Works OK on, e.g., MNIST.

Handcrafted Representations

- Idea: build a feature extractor to detect:
 - The shape of the eyebrows.
 - Angle of the corners of the mouth.
 - Are teeth visible?

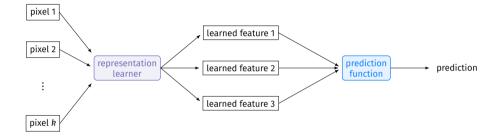
Use these as high-level features instead.



Problem

- Extractors (may) make good representations.
- But building a feature extractor is hard².
- Can we learn a good representation?

²It took evolution a while to come up with the visual hierarchy.



DSC 190

- We'll see how to learn good representations.
- Good representations help us when:
 - 1. making predictions;
 - 2. doing EDA (better visualizations).

Claim

Many of the famous recent advancements in AI/ML are due to representation learning.

Representations and Structure

Real world data has structure.

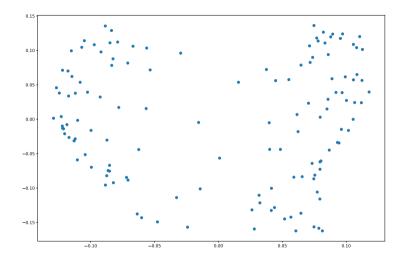
But "seeing" the structure requires the right representation.

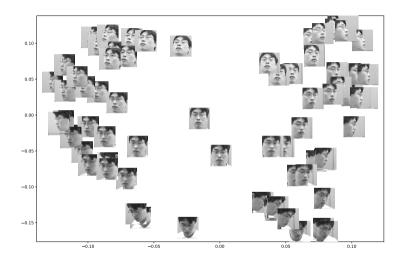
Example: Pose Estimation

Problem: Classify, is person looking left, right, up, down, netural?

Example: Pose Estimation

- As a "bag of pixels" each image is a vector in R^{10,000}.
- Later: we'll see how to reduce dimensionality while preserving "closeness".





Main Idea

By learning a better representation, the original classification problem becomes easy, almost trivial.

Example: word2vec

- How do we represent a word?
- Google's word2vec learned a representation of words as points in 300 dimensional space.
- ► Two points close ↔ words have similar meanings.

Example: word2vec

Fun fact: we can now add and subtract words.
 They're represented as vectors.

Surprising results:

$$\vec{v}_{Paris} - \vec{v}_{France} + \vec{v}_{China} \approx \vec{v}_{Beijing}$$

Example: word2vec³

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

³"Efficient Estimation of Word Representations in Vector Space" by Mikolov, et al.

Example: Neural Networks

- word2vec is an example of a neural network model.
- Deep neural networks have been very successful on certain tasks.
- ► They **learn** a good representation.

Main Idea

Building a good model requires picking a good **feature representation**.

We can pick features by hand.

Or we can **learn** a good feature representation from data.

That is what this class is about.

Roadmap

Review of DSC 40A:

- Minimizing loss
- Linear models for regression and classification

Clustering as feature learning

- k-means clustering
- RBF networks

Dimensionality reduction

- Review of linear algebra
- Eigenvalues/Eigenvectors
- PCA

Roadmap

- Manifold learning
- Neural Networks
- Autoencoders
- Deep Learning

Practice vs. Theory

- Goal of this class: understand the fundamentals of representation learning.
- Both practical and theoretical.
- Think: more DSC 40A than DSC 80, but a bit of both.

Tools of the Trade

- We'll see some of the popular Python tools for feature learning.
 - ▶ numpy
 - 🕨 keras
 - 🕨 sklearn
 - ▶ ...

DSC 190 Machine Learning: Representations

Lecture 1 | Part 2

Syllabus

Miscellaneous

- Campuswire > Email
- ▶ No discussion tomorrow.

DSC 190 Machine Learning: Representations

Lecture 1 | Part 3

Is DSC 190 for You?

Is DSC 190 for you?

DSC 190 will eventually become DSC 140B.

- DSC 140A/140B are targeted to DSC majors.
 - Compared to other ML classes, Assume some ML background (40A, 80).

Is DSC 190 for you?

- Unfortunately, it's a little confusing.
- DSC 190 and CSE 151A are equivalent in credit.
- Not equivalent in topics.
- Consequence of creating our own ML in DSC.

Bottom Line

If you are a DSC major, haven't taken an ML class:
 Take this class and DSC 140A (in either order).

If you are a DSC major, have taken an ML class: Talk to an advisor.

"This course substitutes the CORE CSE 151A Requirement. Students cannot receive major or minor credit for both CSE 151A and DSC 190 A00- SP22, as only one course can fulfill this major core requirement."

Bottom Line

- If you're not a DSC major, looking for an ML elective:
 - This course might be a good option if you already have some ML background.
 - But it is targeted to data scientists.
 - CSE 151A, DSC 80, DSC 148, CSE 158, etc. may be better options.

Next Time

- Review of DSC 40A topics.
- Learning as optimizing loss.
- Linear models for regression and classification.