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Lecture 3 | Part1

An Embarrassment for the Perceptron
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The Perceptron
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The Perceptron

The perceptron uses a linear prediction function:

H(X) = Wy + WXy + WoX, + .o + WX
d
=Wy + z W, X;
i=1
= W - Aug(X)

Trained using the perceptron loss.
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Linear Decision Functions
A linear prediction function H outputs a number.
What if classes are +1 and -1?

Can be turned into a decision function by taking:
sign(H(X))

Decision boundary is where H = 0
Where the sign switches from positive to negative.
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A linear decision function’s decision boundary is

linear.

Decision Boundaries

A line, plane, hyperplane, etc.
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NEW NAVY DRVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be . con-
scious of its existence,

The embryo—the Weather|

Bureau's $2,000,000 “704" com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
d tration for v

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
\signer of the Perceptron, con-
|ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
Iman brain. As do human be-

ings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, :

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, But-‘
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

Withont Human Controls

The Navy said the perceptron
would be the- first non-liﬂngl
mechanism “capable of receiv-|
ing, recogniZing and identifying|
its surroundings without -any
human training or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. |

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr, Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce ti lves on an a y
line and which would be con-'

scious of their existence.

1958 New York
Times...

In today's demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learns by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q" for the left
squares and “O" for the right
squares.

Dr. Rosenblatt said he could
explain why the machine
learned only in highly technical
terms. But he said the computer
had undergone a *self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.
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An Example: Parking Predictor

Task: Predict (yes / no): Is there parking
available at UCSD right now?

What training data to collect? What features?
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Useful Features
Time of day?

Day’s high temperature?
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Imagine a scatter plot of the training data with the
two features:

x, = time of day

X, = temperature

“yes” examples are green, “no” are red.

What does it look like?
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temperature

X2 =

Parking Data

® Found Parking @
® No Parking
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X1 = time of day
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temperature

X2 =

® Found Parking @
@ No Parking

Uh oh

X1 = time of day

A linear decision function
won't work.

A perceptron (or linear
SVM, logistic regression

model, etc.) won't capture
the trend

What do we do?
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Today’s Question

How do we learn non-linear patterns using linear
prediction functions?
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Representations

We represented the data with two features: time
and temperature

In this representation, the trend is nonlinear.
There is no good linear decision function
Learning is “difficult”.
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Idea

Idea: We'll make a new representation by
creating new features from the old features.

The “right” representation makes the problem
easy again.

What new features should we create?
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New Feature Representation

Linear prediction functions' work well when

relationship is linear
When x is small we should predict -1
When x is large we should predict +1

But parking’s relationship with time is not linear:
When time is small we should predict +1
When time is medium we should predict -1
When time is large we should predict +1

TRemember: they are weighted votes.
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How can we “transform” the time of day x, to
create a new feature x; satisfying:

When x
When x

is small, we should predict -1

]
1 Is large, we should predict +1

What about the temperature, x,?
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temperature

X2 =

® Found Parking  ©

@ No Parking

X1 = time of day

Idea

Transform “time” to “absolute time
until/since Noon”

Transform “temp.” to “absolute
difference between temp. and 72"
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Basis Functions

We will transform:
the time, x,, to |x, - Noon|
the temperature, x,, to |x, - 72'|

Formally, we've designed non-linear basis
functions:

®,(x;,X,) = |x; - Noon|
(P2(X1,X2) = |X2 =72

In general a basis function ¢ maps RY - R
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Feature Mapping

N AN - S\WT - .
Define @(X) = ((p.1 (X), 0,(X))". © is a feature map
Input: vector in “old” representation
Output: vector in “new” representation

Example:

@((10a.m.,75)7) = (2 hours, 3°)"

( maps raw data to a feature space.
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temperature

Xy =

Feature Space, Visualized

® Found Parking @
® No Parking

X1 = time of day
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Where does ¢ map X,

temperature

X =
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temperature

Xy =

Solution

@ Found Parking .ﬁ(3) ® Found Parking
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X1 = time of day
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After the Mapping

The basis functions ,, @, give us our “new
features.

This gives us a new representation.

In this representation, learning (classification) is
easier.
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Training

Map each training example X) to feature space,
creating new training data:

0= pERD), =G, ., 2= pEO)

Fit linear prediction function H in usual way:

Hf(z) =Wy + W,Zy + W2y + .+ W,Z,
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Training Data in Feature Space

° ® Found Parking
@ No Parking
[} ..

Z;
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Prediction

If we have Z in feature space, prediction is:

Hf(z) =Wy + W, Zy + WyZy + .+ W,Zy
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Prediction

But if we have X from original space, we must
“convert” X to feature space first:

HER) = HAB(R)
= H:((0,(X), @5(X)y ey 04(X))7)
= Wy + Wi, (X) + Wy, (X) + ... + Wy, (X)
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Overview: Feature Mapping

A basis function can involve any/all of the
original features:

P5(X) = x, - X,

We can make more basis functions than original
features:

B(X) = (94(X), p,(X), 95(X))
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Overview: Feature Mapping

Start with data in original space, RY.

Choose some basis functions, @, @,, ..., @,

Map each data point to feature space RY":

X ((p1 ()-e)r (pz()?)r seey ‘-pd'()?))t

Fit linear prediction function in new space:

H()-Z) =W, +Ww, (P1()?) + chpz()?)
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H()?) =Wy + W, (P1()?) + Wz(Pz()?)




Today’s Question

Q: How do we learn non-linear patterns using
linear prediction functions?

A: Use non-linear basis functions to map to a
feature space.
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By the way...

You've (probably) seen basis functions used
before.

Linear regression for non-linear patterns in DSC
40A.
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Fitting Non-Linear Patterns

Fit function of the form

_ 2 3 4
H(X) = Wy + W, X + WX~ + WX~ + W, X

Linear function of w, non-linear function of x.
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The Trick

Treat x, x?, x3, x* as new features.
Create design matrix:

Solve X"Xw = X"w for W, as usual.

Works for more than just polynomials.
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Another View

We have changed the representation of a point:

x - (x,x%,x3,x%)

Basis functions:

2 4

(,01(X) =X (PZ(X) =X (P3(X) = x3 (pq(x) =X
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A Tale of Two Spaces
The original space: where the raw data lies.

The feature space: where the data lies after
feature mapping @

Remember: we fit a linear prediction function in
the feature space.
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In feature space, what does the decision
boundary look like?

What does the prediction function surface
look like?
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Decision Boundary in Feature Space

|temp - 70 degrees|
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2Fit by minimizing square loss
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Prediction Surface in Feature Space
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In the original space, what does the decision
boundary look like?

What does the prediction function surface
look like?
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Decision Boundary in Original Space’

temperature

X =

® Found Parking
® No Parking
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3Fit by minimizing square loss
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Prediction Surface in Original Space

46 [ 54



Insight

H is a sum of basis functions, ¢, and o,
H(X) = wy + w, i, (X) + w,p,(X)

The prediction surface is a sum of other surfaces.

Each basis function is a “building block”.
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Visualizing the Basis Function ¢.

W, +W, | X, -noon|

0
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Visualizing the Basis Function ¢,

W, + W, [x, - 727
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Visualizing the Prediction Surface
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The decision boundary has a single “pocket” where
it is negative. Can it have more than one, assuming
we use basis functions of the same form? What if
we use more than two basis functions?
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Answer: No!
Recall: the sum of convex functions is convex.
Each of our basis functions is convex.
So the prediction surface will be convex, too.

Limited in what patterns they can classify.
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temperature

Xy =

View: Function Approximation
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What's Wrong?

We've discovered how to learn non-linear
patterns using linear prediction functions.

Use non-linear basis functions to map to a feature
space.

Something should bug you, though...
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