DSC 190 Machine Learning: Representations

Lecture 4 | Part 1

Radial Basis Functions

Recap

- Linear prediction functions are limited.
- ► Idea: transform the data to a new space where prediction is "easier".
- ► To do so, we used **basis functions**.

$$x_1$$
 φ_1 w_1 w_0 w_2 w_2 w_2

 φ_d

 \mathbf{x}_{d}

 $H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x})$

Overview: Feature Mapping

- 1. Start with data in original space, \mathbb{R}^d .
- 2. Choose some basis functions, $\varphi_1, \varphi_2, ..., \varphi_{d'}$
- 3. Map each data point to **feature space** $\mathbb{R}^{d'}$: $\vec{x} \mapsto (\varphi_1(\vec{x}), \varphi_2(\vec{x}), ..., \varphi_{d'}(\vec{x}))^t$
- 4. Fit linear prediction function in new space:

$$H(\vec{x}) = W_0 + W_1 \varphi_1(\vec{x}) + W_2 \varphi_2(\vec{x})$$

Last Time

Last Time

Visualizing the "Prediction Surface"

Visualizing the Basis Function ϕ_1

$$\triangleright w_0 + w_1 | x_1 - \text{noon} |$$

Visualizing the Basis Function ϕ_2

$$W_0 + W_2 | x_2 - 72^{\circ} |$$

Visualizing the "Prediction Surface"

The Decision Boundary

- ► The prediction surface is a sum of other surfaces.
- Each basis function is a "building block".
- ► The **decision boundary** is where surface = zero.

Exercise

The decision boundary has a single "pocket" where it is negative. Can it have more than one, assuming we use basis functions of the same form? What if we use more than two basis functions?

Answer: No!

- Recall: the sum of convex functions is convex.
- Each of our basis functions is convex.
- So the prediction surface will be convex, too.
- Limited in what patterns they can classify.

H=
$$w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x}) + \cdots$$

Choosing Basis Functions

- Moon
- Our previous basis functions have limitations.
- They are convex: prediction surface can only have one negative/positive region.
- ▶ They diverge $\rightarrow \infty$ away from their centers.
 - They get more "confident"?

Gaussian Basis Functions

A common choice: Gaussian basis functions:

$$\varphi(\vec{x};\vec{\mu},\sigma)=e^{-\|\vec{x}-\vec{\mu}\|^2/\sigma^2}$$

- $\vec{\mu}$ is the center.
- \triangleright σ controls the "width"

Gaussian Basis Function

- ► If \vec{x} is close to $\vec{\mu}$, $\phi(\vec{x}; \vec{\mu}, \sigma)$ is large.
- ► If \vec{x} is far from $\vec{\mu}$, $\phi(\vec{x}; \vec{\mu}, \sigma)$ is small.
- Intuition: φ measures how "similar" \vec{x} is to $\vec{\mu}$.
 - Assumes that "similar" objects have close feature vectors.

New Representation

- ▶ Pick number of new features, d'.
- Pick centers for Gaussians $\vec{\mu}^{(1)}, ..., \vec{\mu}^{(2)}, ..., \vec{\mu}^{(d')}$
- Pick widths: $\sigma_1, \sigma_2, ..., \sigma_{d'}$ (usually all the same)
- Define *i*th basis function:

$$\varphi_i(\vec{x}) = e^{-\|\vec{x} - \vec{\mu}^{(i)}\|^2/\sigma_i^2}$$

New Representation

- For any feature vector $\vec{x} \in \mathbb{R}^d$, map to vector $\vec{\phi}(\vec{x}) \in \mathbb{R}^{d'}$.
 - φ_1 : "similarity" of \vec{x} to $\vec{\mu}^{(1)}$
 - φ_2 : "similarity" of \vec{x} to $\vec{\mu}^{(2)}$
 - **...**
 - $\triangleright \varphi_{d}$: "similarity" of \vec{x} to $\vec{\mu}^{(d')}$

- Train linear classifier in this new representation.
 - ► E.g., by minimizing expected square loss.

Exercise

How many Gaussian basis functions would you use, and where would you place them to create a new representation for this data?

Placement

$$\psi(\dot{x}) = \begin{pmatrix} \psi(\dot{x}) \\ \psi(\dot{x}) \end{pmatrix}$$
 Feature Space

Prediction Function

 \vdash $H(\vec{x})$ is a sum of Gaussians:

$$H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x}) + \dots$$

= $w_0 + w_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2 / \sigma^2} + w_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2 / \sigma^2} + \dots$

Exercise

What does the surface of the prediction function look like?

Hint: what does the sum of 1-d Gaussians look like?

Prediction Function Surface

$$H(\vec{x}) = W_0 + W_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2/\sigma^2} + W_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2/\sigma^2}$$

An Interpretation

- ightharpoonup Basis function φ_i makes a "bump" in surface of H
- w, adjusts the "prominance" of this bump

Decision Boundary

More Features

By increasing number of basis functions, we can make more complex decision surfaces.

Another Example

Prediction Surface

Decision Boundary

Radial Basis Functions

- Gaussians are examples of radial basis functions.
- Each basis function has a **center**, \vec{c} .
- Value depends only on distance from center:

Another Radial Basis Function

Multiquadric: $\varphi(\vec{x}; \vec{c}) = \sqrt{\sigma^2 + ||\vec{x} - \vec{c}||}/\sigma$

DSC 190 Machine Learning: Representations

Lecture 4 | Part 2

Radial Basis Function Networks

Recap

- 1. Choose basis functions, $\varphi_1, ..., \varphi_{d'}$
- 2. Transform data to new representation:

$$\vec{x} \mapsto (\varphi_1(\vec{x}), \varphi_2(\vec{x}), \dots, \varphi_{d'}(\vec{x}))^T$$

3. Train a linear classifier in this new space:

$$H(\vec{x}) = W_0 + W_1 \varphi_1(\vec{x}) + W_2 \varphi_2(\vec{x}) + ... + W_{d'} \varphi_{d'}(\vec{x})$$

The Model

ightharpoonup The φ are **basis functions**.

$$H(\vec{x}) = w_0 + w_1 \varphi_1(\vec{x}) + w_2 \varphi_2(\vec{x})$$

Radial Basis Function Networks

- If the basis functions are radial basis functions, we call this a radial basis function (RBF) network.
- It is a simple type of neural network.

Training

- An RBF network has these parameters:
 - w: the weights associated to each "new" feature
 - the parameters of each individual basis function:
 - $\vdash \vec{\mu}_i$ (the center)
 - \triangleright possibly others (e.g., σ)
- How do we choose the parameters?

Minimizing Expected Loss

- As with most any model, we can try to find parameters by minimizing expected loss.
- However, now the risk is a complex, non-linear function of many things:

$$R(\vec{w}, \vec{\mu}_1, ..., \vec{\mu}_{d'}, \sigma, ...).$$

As opposed to a simple linear model: $R(\vec{w})$.

Training

- Optimization is now much harder.
- Instead, we decouple:
- Find basis function parameters in some way, consider them fixed.
- Now train w by minimizing risk

Theory

Given suitably-many basis functions, a Gaussian RBF is capable of approximating any continuous function arbitrarily well.

DSC 190 Machine Learning: Representations

Lecture 4 | Part 3

Choosing RBF Locations

Recap

- We map data to a new representation by first choosing basis functions.
- Radial Basis Functions (RBFs), such as Gaussians, are a popular choice.
- Requires choosing center for each basis function.

Prediction Function

Our prediction function H is a surface that is made up of Gaussian "bumps".

$$H(\vec{x}) = w_0 + w_1 e^{-\|\vec{x} - \vec{\mu}_1\|^2/\sigma^2} + w_2 e^{-\|\vec{x} - \vec{\mu}_2\|^2/\sigma^2}$$

Choosing Centers

- Place the centers where the value of the prediction function should be controlled.
- Intuitively: place centers where the data is.

Approaches

- 1. Every data point as a center
- 2. Randomly choose centers
- 3. Clustering

Approach #1: Every Data Point as a Center

Dimensionality

- ▶ We'll have *n* basis functions one for each point.
- ▶ That means we'll have *n* features.
- ► Each feature vector $\vec{\phi}(\vec{x}) \in \mathbb{R}^n$.

$$\vec{\phi}(\vec{x}) = (\phi_1(\vec{x}), \phi_2(\vec{x}), ..., \phi_n(\vec{x}))^T$$

Problems

- ► This causes problems.
- First: more likely to overfit.
- Second: computationally expensive^a.

^aHowever, this is very doable with SVMs

Computational Cost

- Suppose feature matrix X is $n \times d$
 - n points in d dimensions
- Time complexity of solving $X^T X \vec{w} = X^T \vec{y}$ is $\Theta(nd^2)$
- ▶ Usually $d \ll n$. But if d = n, this is $\Theta(n^3)$.
- Not great! If $n \approx 10,000$, then takes > 10 minutes.

Approach #2: A Random Sample

Idea: randomly choose k data points as centers.

Problem

- May undersample/oversample a region.
- More advanced sampling approaches exist.

Approach #3: Clustering

- Group data points into clusters.
- Cluster centers are good places for RBFs.
- ▶ We'll use *k*-means clustering to pick *k* centers.

DSC 190 Machine Learning: Representations

Lecture 4 | Part 4

Linear Algebra: Linear Transformations

And now for something completely different...

► This and the next few lectures will end with linear algebra refreshers.

Vectors

- ightharpoonup A vector \vec{x} is an arrow from the origin to a point.
- We can make new arrows by:
 - ightharpoonup scaling: $\alpha \vec{x}$
 - ► addition: $\vec{x} + \vec{y}$
 - ▶ both: $\alpha \vec{x} + \beta \vec{y}$
- $\|\vec{x}\|$ is the **norm** (or length) of \vec{x}

Linear Combinations

We can add together a bunch of arrows:

$$\vec{y} = \alpha_1 \vec{x}^{(1)} + \alpha_2 \vec{x}^{(2)} + ... + \alpha_n \vec{x}^{(n)}$$

► This is a **linear combination** of $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$

Decompositions

- Consider the two vectors, $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- Claim: any vector \vec{x} in \mathbb{R}^2 can be decomposed (written) as $\vec{x} = \alpha \vec{u}^{(1)} + \beta \vec{u}^{(2)}$
- $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$ form a basis of \mathbb{R}^2

Bases

- ► There was nothing special about $\vec{u}^{(1)}$ and $\vec{u}^{(2)}$.
- ▶ There are **infinitely many** bases of \mathbb{R}^2 .
- But there is one that is particularly natural...

Standard Basis Vectors

 $\hat{e}^{(1)}$ and $\hat{e}^{(2)}$ are the standard basis vectors in \mathbb{R}^2 .

We write
$$\vec{x} = \alpha \hat{e}^{(1)} + \beta \hat{e}^{(2)}$$

Coordinate Vectors

 \triangleright We often write a vector \vec{x} as a coordinate vector:

$$\vec{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \end{pmatrix}$$

Meaning: $\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + ... + x_d \hat{e}^{(d)}$

Functions of a Vector

- ▶ In ML, we often work with functions of a vector: $f: \mathbb{R}^d \to \mathbb{R}^{d'}$.
- \triangleright Example: a prediction function. $H(\vec{x})$.
- Functions of a vector can return:
 - ▶ a number: $f : \mathbb{R}^d \to \mathbb{R}^1$ ▶ a vector $f : \mathbb{R}^d \to \mathbb{R}^{d'}$

 - something else?

Transformations

A transformation f is a function that takes in a vector, and returns a vector of the same dimensionality.

▶ That is, $f: \mathbb{R}^d \to \mathbb{R}^d$.

 $f_1(\vec{x})$ halves horizontal component.

 $f_2(\vec{x})$ flips \vec{x} over the dashed line.

 $f_3(\vec{x})$ projects \vec{x} onto the horizontal axis.

 $f_{\mu}(\vec{x})$ rotates \vec{x} by 45° anticlockwise.

Linear Transformations

- An arbitrary transformation can be quite complex.
- For mathematical ease, we may decide to consider only linear transformations.
- ► A transformation *f* is linear if:

$$f(\alpha \vec{x} + \beta \vec{y}) = \alpha f(\vec{x}) + \beta f(\vec{y})$$

By the way...

Linear" functions, f(x) = mx + b, aren't linear in this sense (unless b = 0).

Rather call these "affine" functions.

- All of the previous four transformations are linear.
- Another example: $f(\vec{x}) = (x_1 + x_2, x_1 x_2)^T$
- Non-example: f scales the input by the square of its length.

Main Idea

We use linear functions (and linear transformations) because they are simple and easy to work with mathematically.

The Simplicity of Linear Transformations

- Suppose f is an arbitrary transformation.
- ► I tell you $f(\hat{e}^{(1)}) = (2,1)^T$ and $f(\hat{e}^{(2)}) = (-3,0)^T$.
- ightharpoonup I tell you $\vec{x} = (x_1, x_2)^T$.
- ▶ What is $f(\vec{x})$?

The Simplicity of Linear Transformations

- Suppose f is a linear transformation.
- ► I tell you $f(\hat{e}^{(1)}) = (2,1)^T$ and $f(\hat{e}^{(2)}) = (-3,0)^T$.
- $\vdash \text{I tell you } \vec{x} = (x_1, x_2)^T.$
- ▶ What is $f(\vec{x})$?

Exercise

- Suppose f is a **linear** transformation. I tell you $f(\hat{e}^{(1)}) = (2,1)^T$ and $f(\hat{e}^{(2)}) = (-3,0)^T$. I tell you $\vec{x} = (3,-4)^T$.
- ▶ What is $f(\vec{x})$?

Key Fact

- Linear functions are determined **entirely** by what they do on the basis vectors.
- ▶ I.e., to tell you what f does, I only need to tell you $f(\hat{e}^{(1)})$ and $f(\hat{e}^{(2)})$.
- This makes the math easy!