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Lecture 4 Part1

Radial Basis Functions
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Recap

Linear prediction functions are limited.

Idea: transform the data to a new space where
prediction is “easier”.

To do so, we used basis functions.






Overview: Feature Mapping

Start with data in original space, RY.

Choose some basis functions, ¢, @,, ..., @,

Map each data point to feature space R?":

% > (0,3, 9,(R), ., 0 (F))

Fit linear prediction function in new space:

H(x) = Wy + W, (P1()?) + chpz()?)
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Visualizing the “Prediction Surface”




Visualizing the Basis Function ¢.
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Visualizing the Basis Function ¢,

W, + W, | X, - 72|




Visualizing the “Prediction Surface”

S NS S N Rt



The Decision Boundary
The prediction surface is a sum of other surfaces.
Each basis function is a “building block”.

The decision boundary is where surface = zero.



The decision boundary has a single “pocket” where
itis negative. Can it have more than one, assuming
we use basis functions of the same form? What if
we use more than two basis functions?
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Answer: No!
Recall: the sum of convex functions is convex.
Each of our basis functions is convex.
So the prediction surface will be convex, too.

Limited in what patterns they can classify.
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Gaussian Basis Functions

A common .choice: Gaussian
basis functions:

@(% i, 0) = eIAI"
fi is the center.

o controls the “width”




Gaussian Basis Function
If X is close to I, w(X; [, 0) is large.
If X is far from I, @(X; i, 0) is small.

Intuition: ¢ measures how “similar” X is to [.

Assumes that “similar” objects have close feature
vectors.



New Representation

Pick number of new features, d'.

Pick centers for Gaussians fi\",..., i, ..., (@)
Pick widths: 0., 0,, ...,éd, (usually all the same)
Define ith basis function:

-I%-D12/of

(P,'()?) =e



New Representation

For any feature vector X € RY, map to vector
P(X) e RY.

,: “similarity” of X to g("

,: “similarity” of X to §®

@, “similarity” of X to ("

Train linear classifier in this new representation.
E.g., by minimizing expected square loss.



How many Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?
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Placement
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Prediction Function

H(X) is a sum of Gaussians:

H(X) = wy + w, @, (X) + W, ,(X) + ...

ol 127 A2 Mol 12 /A2
= Wy + wye KA1y ool5-il o



What does the surface of the prediction function
look like?

Hint: what does the sum of 1-d Gaussians look like?
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Prediction Function Surface

4 -3 2 -1 0

%) = -I%-fi 17 /0? -I%-fi, 17 /0?
H(X) = w, + w, e ** +w,e



An Interpretation

Basis function ¢, makes a “bump” in surface of H
w; adjusts the “prominance” of this bump

— W, =W,
uw‘4w1



Decision Boundary




More Features

By increasing number of basis functions, we can .
make more complex decision surfaces. e




Another Example
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Prediction Surface




Decision Boundary

sigma = 1.5




Radial Basis Functions
Gaussians are examples of radial basis functions.
Each basis function has a center, C.

Value depends only on distance from center:

@ ©(X;€) = f(IIx -l



Another Radial Basis Function

Multiquadric: @(%;¢) = /o2 + |% - &]| /o
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Lecture 4 Part 2

Radial Basis Function Networks



Recap
Choose basis functions, @, ..., @,

Transform data to new representation:
)_e . ((p'| ()?)t (pz()_e)r °ce (Pdr()?))T
Train a linear classifier in this new space:

H(X) = o + W, 01(X) + Wy (X) + o+ Wy, 0. (X)



The Model

The @ are basis functions.

H(X) = wy+w, @, (X)+w,@,(X)




Radial Basis Function Networks

If the basis
functions are radial
basis functions, we
call this a radial
basis function (RBF)
network.

It is a simple type of
neural network.




Training

An RBF network has these parameters:
w;: the weights associated to each “new” feature
the parameters of each individual basis function:
fi. (the center)

possibly others (e.g., 0)

How do we choose the parameters?



Minimizing Expected Loss

As with most any model, we can try to find
parameters by minimizing expected loss.

However, now the risk is a complex, non-linear
function of many things:

R, fi s o fl g O, ).

As opposed to a simple linear model: R(W).



Training

Optimization is now
much harder.

Instead, we
decouple:

Find basis function
parameters in some
way, consider them
fixed.

Now train w by
minimizing risk



Theory

Given suitably-many basis functions, a Gaussian
RBF is capable of approximating any continuous
function arbitrarily well.
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Choosing RBF Locations



Recap

We map data to a new representation by first
choosing basis functions.

Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.

Requires choosing center for each basis function.



Prediction Function

Our prediction function H
is a surface that is made
up of Gaussian “bumps”.

%) = -I%-fi 17 /0? -1%-fi, 17 /0?
H(X) = w, + w, e * +w,e



Choosing Centers

Place the centers where
the value of the prediction
function should be
controlled.

Intuitively: place centers
where the data is.
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Approaches
Every data point as a center
Randomly choose centers

Clustering



Approach #1: Every Data Point as a
Center
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Dimensionality
We'll have n basis functions — one for each point.
That means we’'ll have n features.

Fach feature vector ¢(X) € R".

B(R) = (¢(X), ,(X), e, b, (X))



Problems

This causes problems.

First: more likely to
overfit.

Second: computationally
expensive’.

9However, this is very doable with SVMs

X2




Computational Cost

Suppose feature matrix X isn x d
n points in d dimensions

Time complexity of solving X"XWw = X"y is ©(nd?)
Usually d < n. But if d = n, this is O(n3).

Not great! If n = 10,000, then takes > 10 minutes.



Approach #2: A Random Sample

Idea: randomly choose k data points as centers.
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Problem
May undersample/oversample a region.

More advanced sampling approaches exist.



Approach #3: Clustering
Group data points into clusters.
Cluster centers are good places for RBFs.

We'll use k-means clustering to pick R centers.
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Lecture 4 Part 4

Linear Algebra: Linear Transformations



And now for something completely
different...

This and the next few lectures will end with
linear algebra refreshers.



Vectors
A vector X is an arrow from the origin to a point.

We can make new arrows by:
scaling: aXx
addition: X +y
both: ax + By

| X|| is the norm (or length) of X



Linear Combinations

We can add together a bunch of arrows:

y=a, XD+ o, %+ e %M

This is a linear combination of X\, ..., x("



Decompositions

Consider the two vectors, ii("
and 4.

Claim: any vector X in R? can be
decomposed (written) as
X =au" + Bu®

™ and @ form a basis of R?




Bases
There was nothing special about & and &i®.
There are infinitely many bases of R?.

But there is one that is particularly natural...



Standard Basis Vectors
é") and é? are the standard basis vectors in RZ.

We write X = aé(V) + ge®

A




Coordinate Vectors

We often write a vector X as a coordinate vector:

X

R
x=1"2

1
X4

Meaning: X = x.éM + x.6@ + ...+ x @
1 2 d



Functions of a Vector

In ML, we often work with functions of a vector:
f:RY > RY,

Example: a prediction function, H(X).

Functions of a vector can return:
anumber: f : R - R’
avector f : RY -» RY
something else?



Transformations

A transformation f is a function that takes in a
vector, and returns a vector of the same
dimensionality.

Thatis, f : RY — RC.



Example

f,(X) halves horizontal component

f1(X)

X1




Example

f,(X) flips X over the dashed line.

X

f2(X)



Example

f3(X) projects X onto the horizontal axis.

rooXi

f3(X)



Example

f,(X) rotates X by 45" anticlockwise.

f3(%)

i




Linear Transformations

An arbitrary transformation can be quite
complex.

For mathematical ease, we may decide to
consider only linear transformations.

A transformation f is linear if:

flax + BY) = af(X) + Bf(¥)



By the way...

“Linear” functions, f(x) = mx + b, aren’t linear in
this sense (unless b = 0).

Rather call these “affine” functions.



Examples

All of the previous four transformations are
linear.

Another example: f(X) = (X, + X,, X, - X,)T
Non-example: f scales the input by the square
of its length.



Main Idea

We use linear functions (and linear transforma-
tions) because they are simple and easy to work
with mathematically.




The Simplicity of Linear
Transformations

Suppose f is an arbitrary transformation.
| tell you f(é™M) = (2,1)T and f(é®?) = (-3, 0)".
| tell you X = (x;, X,)".

What is f(X)?



The Simplicity of Linear
Transformations

Suppose f is a linear transformation.
| tell you f(é™M) = (2,1)T and f(é®?) = (-3, 0)".
| tell you X = (x;, X,)".

What is f(X)?



Suppose f is a linear transformation.

| tell you f(é™) = (2,1)" and f(é?) = (-3,0)".
| tell you X = (3,-4)".

What is f(X)?




Key Fact

Linear functions are determined entirely by what
they do on the basis vectors.

l.e., to tell you what f does, | only need to tell
you f(é™M) and f(e®).

This makes the math easy!



