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Radial Basis Functions
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Recap
▶ Linear prediction functions are limited.

▶ Idea: transform the data to a new space where
prediction is “easier”.

▶ To do so, we used basis functions.
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𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)
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Overview: Feature Mapping
1. Start with data in original space, ℝ𝑑 .

2. Choose some basis functions, 𝜑1, 𝜑2, … , 𝜑𝑑′

3. Map each data point to feature space ℝ𝑑′:
⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑡

4. Fit linear prediction function in new space:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥)
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Visualizing the “Prediction Surface”
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Visualizing the Basis Function 𝜑1

▶ 𝑤0+𝑤1|𝑥1−noon|
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Visualizing the Basis Function 𝜑2

▶ 𝑤0 + 𝑤2|𝑥2 − 72∘|
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Visualizing the “Prediction Surface”

= +
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The Decision Boundary
▶ The prediction surface is a sum of other surfaces.

▶ Each basis function is a “building block”.

▶ The decision boundary is where surface = zero.

11 / 53



Exercise
The decision boundary has a single “pocket” where
it is negative. Can it have more than one, assuming
we use basis functions of the same form? What if
we use more than two basis functions?
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Answer: No!
▶ Recall: the sum of convex functions is convex.

▶ Each of our basis functions is convex.

▶ So the prediction surface will be convex, too.

▶ Limited in what patterns they can classify.
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Choosing Basis Functions
▶ Our previous basis functions have limitations.

▶ They are convex: prediction surface can only
have one negative/positive region.

▶ They diverge→∞ away from their centers.
▶ They get more “confident”?
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Example
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Gaussian Basis Functions
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▶ A common choice: Gaussian
basis functions:

𝜑( ⃗𝑥; 𝜇⃗, 𝜎) = 𝑒−‖ ⃗𝑥−𝜇⃗‖2/𝜎2

▶ 𝜇⃗ is the center.

▶ 𝜎 controls the “width”
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Gaussian Basis Function
▶ If ⃗𝑥 is close to 𝜇⃗, 𝜑( ⃗𝑥; 𝜇⃗, 𝜎) is large.

▶ If ⃗𝑥 is far from 𝜇⃗, 𝜑( ⃗𝑥; 𝜇⃗, 𝜎) is small.

▶ Intuition: 𝜑 measures how “similar” ⃗𝑥 is to 𝜇⃗.
▶ Assumes that “similar” objects have close feature
vectors.
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New Representation
▶ Pick number of new features, 𝑑′.

▶ Pick centers for Gaussians 𝜇⃗(1), … , 𝜇⃗(2), ..., 𝜇⃗(𝑑′)

▶ Pick widths: 𝜎1, 𝜎2, … , 𝜎𝑑′ (usually all the same)

▶ Define 𝑖th basis function:

𝜑𝑖( ⃗𝑥) = 𝑒−‖ ⃗𝑥−𝜇⃗(𝑖)‖2/𝜎2𝑖
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New Representation

▶ For any feature vector ⃗𝑥 ∈ ℝ𝑑 , map to vector
𝜑⃗( ⃗𝑥) ∈ ℝ𝑑′.
▶ 𝜑1: “similarity” of ⃗𝑥 to 𝜇⃗(1)
▶ 𝜑2: “similarity” of ⃗𝑥 to 𝜇⃗(2)
▶ …
▶ 𝜑𝑑′ : “similarity” of ⃗𝑥 to 𝜇⃗(𝑑′)

▶ Train linear classifier in this new representation.
▶ E.g., by minimizing expected square loss.
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Exercise
Howmany Gaussian basis functions would you use,
and where would you place them to create a new
representation for this data?
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Placement
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Feature Space
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Prediction Function
▶ 𝐻( ⃗𝑥) is a sum of Gaussians:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + …
= 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2 + …
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Exercise
What does the surface of the prediction function
look like?

Hint: what does the sumof 1-d Gaussians look like?

24 / 53



Prediction Function Surface

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2
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An Interpretation
▶ Basis function 𝜑𝑖 makes a “bump” in surface of 𝐻▶ 𝑤𝑖 adjusts the “prominance” of this bump
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Decision Boundary
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More Features
▶ By increasing number of basis functions, we can
make more complex decision surfaces.
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Another Example
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Prediction Surface
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Decision Boundary
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Radial Basis Functions
▶ Gaussians are examples of radial basis functions.

▶ Each basis function has a center, ⃗𝑐.

▶ Value depends only on distance from center:

𝜑( ⃗𝑥; ⃗𝑐) = 𝑓(‖ ⃗𝑥 − ⃗𝑐‖)
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Another Radial Basis Function

▶ Multiquadric: 𝜑( ⃗𝑥; ⃗𝑐) = √𝜎2 + ‖ ⃗𝑥 − ⃗𝑐‖/𝜎
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Lecture 4 | Part 2

Radial Basis Function Networks
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Recap
1. Choose basis functions, 𝜑1, … , 𝜑𝑑′

2. Transform data to new representation:

⃗𝑥 ↦ (𝜑1( ⃗𝑥), 𝜑2( ⃗𝑥), … , 𝜑𝑑′( ⃗𝑥))𝑇

3. Train a linear classifier in this new space:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝜑1( ⃗𝑥) + 𝑤2𝜑2( ⃗𝑥) + … + 𝑤𝑑′𝜑𝑑′( ⃗𝑥)
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The Model
▶ The 𝜑 are basis functions.
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𝐻( ⃗𝑥) = 𝑤0+𝑤1𝜑1( ⃗𝑥)+𝑤2𝜑2( ⃗𝑥)
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Radial Basis Function Networks
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▶ If the basis
functions are radial
basis functions, we
call this a radial
basis function (RBF)
network.

▶ It is a simple type of
neural network.
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Training
▶ An RBF network has these parameters:

▶ 𝑤𝑖: the weights associated to each “new” feature▶ the parameters of each individual basis function:
▶ 𝜇⃗𝑖 (the center)
▶ possibly others (e.g., 𝜎)

▶ How do we choose the parameters?
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Minimizing Expected Loss
▶ As with most any model, we can try to find
parameters by minimizing expected loss.

▶ However, now the risk is a complex, non-linear
function of many things:

𝑅(𝑤⃗, 𝜇⃗1, … , 𝜇⃗𝑑′, 𝜎, …).

▶ As opposed to a simple linear model: 𝑅(𝑤⃗).
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Training
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▶ Optimization is now
much harder.

▶ Instead, we
decouple:

1. Find basis function
parameters in some
way, consider them
fixed.

2. Now train 𝑤⃗ by
minimizing risk
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Theory
▶ Given suitably-many basis functions, a Gaussian
RBF is capable of approximating any continuous
function arbitrarily well.
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Lecture 4 | Part 3

Choosing RBF Locations
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Recap
▶ We map data to a new representation by first
choosing basis functions.

▶ Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.

▶ Requires choosing center for each basis function.
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Prediction Function

▶ Our prediction function 𝐻
is a surface that is made
up of Gaussian “bumps”.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑒−‖ ⃗𝑥−𝜇⃗1‖2/𝜎2 + 𝑤2𝑒−‖ ⃗𝑥−𝜇⃗2‖2/𝜎2
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Choosing Centers

▶ Place the centers where
the value of the prediction
function should be
controlled.

▶ Intuitively: place centers
where the data is.
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Approaches
1. Every data point as a center

2. Randomly choose centers

3. Clustering
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Approach #1: Every Data Point as a
Center

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
x1

2

0

2

4

6

8

10

x 2

-1
1

47 / 53



Dimensionality
▶ We’ll have 𝑛 basis functions – one for each point.

▶ That means we’ll have 𝑛 features.

▶ Each feature vector 𝜙⃗( ⃗𝑥) ∈ ℝ𝑛.

𝜙⃗( ⃗𝑥) = (𝜙1( ⃗𝑥), 𝜙2( ⃗𝑥), … , 𝜙𝑛( ⃗𝑥))𝑇
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Problems

▶ This causes problems.

▶ First: more likely to
overfit.

▶ Second: computationally
expensivea.
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Computational Cost
▶ Suppose feature matrix 𝑋 is 𝑛 × 𝑑

▶ 𝑛 points in 𝑑 dimensions

▶ Time complexity of solving 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦 is Θ(𝑛𝑑2)

▶ Usually 𝑑 ≪ 𝑛. But if 𝑑 = 𝑛, this is Θ(𝑛3).

▶ Not great! If 𝑛 ≈ 10, 000, then takes > 10 minutes.
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Approach #2: A Random Sample
▶ Idea: randomly choose 𝑘 data points as centers.
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Problem
▶ May undersample/oversample a region.

▶ More advanced sampling approaches exist.
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Approach #3: Clustering
▶ Group data points into clusters.

▶ Cluster centers are good places for RBFs.

▶ We’ll use 𝑘-means clustering to pick 𝑘 centers.
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