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Radial Basis Functions
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Today

sigma = 1.5
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Recap

Linear prediction functions are limited.

|ldea: transform the data to a new space where
prediction is “easier”.

To do so, we used basis functions.
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H()?) =Wy + W, (P1()?) + Wz(Pz()?)




Overview: Feature Mapping

Start with data in original space, RY.

Choose some basis functions, @, @,, ..., @,

Map each data point to feature space RY":

X ((p1 ()-e)r (pz()?)r seey ‘-pd'()?))t

Fit linear prediction function in new space:

H()-Z) =W, +Ww, (P1()?) + chpz()?)
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Visualizing the “Prediction Surface”
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Visualizing the Basis Function ¢,

W, +W, |Xx,-noon]|
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Visualizing the Basis Function ¢,

W, + W, [x, - 727
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Visualizing the “Prediction Surface”

‘\ = \\ + %
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The Decision Boundary
The prediction surface is a sum of other surfaces.
Each basis function is a “building block”.

The decision boundary is where surface = zero.
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The decision boundary has a single “pocket” where
it is negative. Can it have more than one, assuming
we use basis functions of the same form? What if
we use more than two basis functions?
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Answer: No!
Recall: the sum of convex functions is convex.
Each of our basis functions is convex.
So the prediction surface will be convex, too.

Limited in what patterns they can classify.
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Choosing Basis Functions
Our previous basis functions have limitations.

They are convex: prediction surface can only
have one negative/positive region.

They diverge — o away from their centers.
They get more “confident”?
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Gaussian Basis Functions

A common choice: Gaussian
basis functions:

0% fi,0) = & ¥ 1o
fi is the center.

o controls the “width”
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Gaussian Basis Function
If X is close to i, p(X; [, 0) is large.
If X is far from I, @(X; fi, 0) is small.

Intuition: ¢ measures how “similar” X is to [.

Assumes that “similar” objects have close feature
vectors.
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New Representation

Pick number of new features, d’.

Pick centers for Gaussians ji", ..., i®, ..., p@")

Pick widths: 0., 0,,...,0,, (usually all the same)
Define ith basis function:

%012 0?

(P,'()?) =e
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New Representation

For any feature vector X € R, map to vector
PH(X) € RY".

,: “similarity” of X to "

,: “similarity” of X to it

@,.: “similarity” of X to @)

Train linear classifier in this new representation.
E.g., by minimizing expected square loss.
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How many Gaussian basis functions would you use,

and where would you place them to create a new
representation for this data?
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Placement
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Feature Space
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Prediction Function

H(X) is a sum of Gaussians:

H(X) = wy + w @, (X) + w0, (X) + ...

| WL L L
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What does the surface of the prediction function
look like?

Hint: what does the sum of 1-d Gaussians look like?
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Prediction Function Surface

4 -3 2 -1 0

%) = -I%-fi 17 /0? -I1%-fi, 017 10?
H(X) = w, + w,e " +w, e
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An Interpretation

Basis function ¢, makes a “bump” in surface of H
w; adjusts the “prominance” of this bump
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Decision Boundary
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More Features

By increasing number of basis functions, we can
make more complex decision surfaces.
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Another Example
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Prediction Surface
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Decision Boundary
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Radial Basis Functions
Gaussians are examples of radial basis functions.
Each basis function has a center, C.

Value depends only on distance from center:

@(X;¢) = f(I1x - cll)
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Another Radial Basis Function

Multiquadric: ¢(X;¢) = \/02 +||X-C|l/o

33/53



2scC /90

Hachine /Zearm‘n?_ : Repreawviterhong

Lecture 4  Part?2

Radial Basis Function Networks

34/53



Recap
Choose basis functions, @, ..., @,

Transform data to new representation:
X 5 (@1(X), 9(X), e, 9. (X))
Train a linear classifier in this new space:

H(X) = wy + W, (X) + w0, (X) + ... + W, 0. (X)
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The Model

The @ are basis functions.

H(R) = Wy, 0, (R)o i p,(R)




Radial Basis Function Networks

If the basis
functions are radial
basis functions, we
call this a radial
basis function (RBF)
network.

It is a simple type of
neural network.
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Training

An RBF network has these parameters:
w.: the weights associated to each “new” feature
the parameters of each individual basis function:
fi. (the center)
possibly others (e.g., o)

How do we choose the parameters?

38/53



Minimizing Expected Loss

As with most any model, we can try to find
parameters by minimizing expected loss.

However, now the risk is a complex, non-linear
function of many things:

As opposed to a simple linear model: R(w).
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Training

Optimization is now
much harder.

Instead, we
decouple:

Find basis function
parameters in some
way, consider them
fixed.

Now train W by
minimizing risk
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Theory

Given suitably-many basis functions, a Gaussian
RBF is capable of approximating any continuous
function arbitrarily well.
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Recap

We map data to a new representation by first
choosing basis functions.

Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.

Requires choosing center for each basis function.
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Prediction Function

Our prediction function H
Is a surface that is made
up of Gaussian “bumps”.

%) = -I%-fi, 17 10® -I%-f, 11?10
H(X) = w, + w, e * +w, e
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Choosing Centers

Place the centers where
the value of the prediction
function should be
controlled.

Intuitively: place centers
where the data is.
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Approaches
Every data point as a center
Randomly choose centers

Clustering
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Approach #1: Every Data Point as a
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Dimensionality

We'll have n basis functions — one for each point.

That means we’ll have n features.

Fach feature vector ¢(X) € R".

B(X) = (¢, (R), B, (X), ..., b, (X))
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Problems

This causes problems.

First: more likely to
overfit.

Second: computationally
expensive’.

9However, this is very doable with SVMs

-25 0.0
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Computational Cost

Suppose feature matrix X isn x d
n points in d dimensions

Time complexity of solving X"Xw = X"y is ©(nd?)

Usually d < n. Butif d = n, this is ©(n3).

Not great! If n = 10,000, then takes > 10 minutes.
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Approach #2: A Random Sample

Idea: randomly choose k data points as centers.
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Problem
May undersample/oversample a region.

More advanced sampling approaches exist.
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Approach #3: Clustering
Group data points into clusters.
Cluster centers are good places for RBFs.

We'll use k-means clustering to pick R centers.
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