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Lecture 5  Part1

Choosing RBF Locations



Recap

We map data to a new representation by first
choosing basis functions.

Radial Basis Functions (RBFs), such as Gaussians,
are a popular choice.

Requires choosing center for each basis function.



Today'’s Lecture

How do we choose basis function centers
automatically?



Prediction Function

Our prediction function H
is a surface that is made
up of Gaussian “bumps”.

%) = -I%-fi 17 /0? -1%-fi, 17 /0?
H(X) = w, + w, e * +w,e



Choosing Centers

Place the centers where
the value of the prediction
function should be
controlled.

Intuitively: place centers
where the data is.
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Approaches
Every data point as a center
Randomly choose centers

Clustering



Clustering
Group data points into clusters.
Cluster centers are good places for RBFs.

We'll use k-means clustering to pick R centers.
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k-means Clustering



Digression...

Let's forget about RBFs for a minute...

What is clustering?



Clustering

Clustering is a machine learning task whose goal
is to find group structure in data.

Why?
Exploratory data analysis.
Representation learning (today).



Example

We gather measurements X) of a bunch of
flowers.
Petal length and petal width

Question: how many species are there?

Goal: cluster the similar flowers into groups.



PetalWidthCm

Example

2.54
°
osee
2.01 0000 .
CX) °
e o 000 o
L
L]
1.5 ]
1.0
.
0.5+ o
o L)
080 o
® 000000 ©
o oo
0.0 T T T T T T
1 2 3 4 5 6 7

PetalLengthCm




Supervised v. Unsupervised

Clustering is an example of an unsupervised
learning task.



Supervised Learning

We tell the machine the “right answer”.
There is a ground truth.

Data set: {(X, y.)}.

Goal: learn relationship between features (")
and labels y..

Examples: classification, regression.



Unsupervised Learning

We don’t tell the machine the “right answer”.
In fact, there might not be one!

Data set:5X")j(usually no test set)

Goal: learn the structure of the data itself.

To discover something, for compression, to use as a
feature later.

Example: clustering



Ground Truth

If we don’t have labels, we can’'t measure
accuracy.

Sometimes, labels don't exist.

Example: cluster customers into types by
previous purchases.



Clustering Approaches
There are many approaches to clustering.
One of the most popular is k-means clustering.

It turns clustering into an optimization problem.



Clustering as Optimization

Goal: compress each clustering into a single
point while minimizing information loss.




K-Means Objective ©*

Given: data, {X)} € R? and a parameter k.

/’c.

Find: k cluster centers fit",..., i®® so that the :
average squared distance from a data point to

nearest cluster center is small.

The k-means objective function:
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Clustering as Optimization
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Clustering as Optimization
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Optimization

Goal: find {i(",..., i® minimizing k-means
objective function.

Problem: this is NP-Hard.

We use a heuristic instead of solving exactly.



Lloyd’s Algorithm for K-Means

Initialize centers, ", ..., i®®) somehow.

Repeat until convergence:
Assign each point X to closest center
Update each i) to be mean of points assigned to it









Example



Example



Theory
Each iteration reduces cost.
This guarantees convergence to a local min.

Initialization is very important.
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Initialization Strategies
Basic Approach: Pick k data points at random.

Better Approach: k-means++:
Pick first center at random from data.
Let C = {{i"V} (centers chosen so far)
Repeat k - 1 more times:

Pick random data point X according to
distribution

P(X) o« min ||X - p?
fec

Add X to C



Picking k

How do we know how many clusters the data
contains?



How does the minimum of the k-means objective
function change as k is increased (that is, as we
allow more clusters)?

Hint: What is the minimum when R = n (we have
one cluster per data point).
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Plot of K-Means Objective
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Observation mam Vefuz oF

Increasing k always decreases/objective function

But increasing kR beyond “true” number of
clusters has diminishing returns.
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Picking k

d{‘mw

The elbow method:
Run kR-means repeatedly with increasing values of k
Plot the value of the objective as a function of k
Find an elbow in the plot
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Applications of K-Means
Discovery

Vector Quantization
Find a finite set of representatives of a large (possibly
infinite) set.



Example
Cluster animal descriptions.
50 animals: grizzly bear, dalmatian, rabbit, pig, ...
85 attributes: long neck, tail, walks, swims, ...

50 data points in R8>, Run k-means with k = 10



Results

@ zebra

@ spider monkey, gorilla, chimpanzee
© tiger, leopard, wolf, bobcat, lion

@ hippopotamus, elephant, rhinoceros

@ Kkiller whale, blue whale, humpback
whale, seal, walrus, dolphin

@ giant panda

@ skunk, mole, hamster, squirrel, rabbit,
bat, rat, weasel, mouse, raccoon

@ antelope, horse, moose, ox, sheep,
giraffe, buffalo, deer, pig, cow

© beaver, otter

@ grizzly bear, dalmatian, persian cat,
german shepherd, siamese cat, fox,
chihuahua, polar bear, collie

@ zebra
@ spider monkey, gorilla, chimpanzee
© tiger, leopard, fox, wolf, bobcat, lion

@ hippopotamus, elephant, rhinoceros,
buffalo, pig

@ Kkiller whale, blue whale, humpback
whale, seal, otter, walrus, dolphin

@ dalmatian, persian cat, german
shepherd, siamese cat, chihuahua,
giant panda, collie

@ beaver, skunk, mole, squirrel, bat,
rat, weasel, mouse, raccoon

@ antelope, horse, moose, ox, sheep,
giraffe, deer, cow

© hamster, rabbit

@ grizzly bear, polar bear



K-Means
Perhaps the most popular clustering algorithm.
Fast, easy to understand.

Assumes spherical clusters.



Example
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K-Means for Finding RBF Centers



Idea

Use kR-means centers as RBF centers.

Typically “over-cluster” by setting k to be large.
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Workflow
“Over-cluster” with kR-means to find centers
Create new features using R RBFs

Fit a least squares classifier



The Data

x1 x2
0 0496714 -0.138264
1 0647689 1.523030

2 -0.234153 -0.234137

w

1579213 0.767435

4 -0.469474 0.542560

395 10.429618 0.207688
396 10.271579 -1.276749
397 8918943 1.053153
398 9.960445 0.681501

399 10.028318 0.029756

400 rows x 2 columns



Step 1) k-means

>>> import sklearn.cluster

>>> ## let's start with 20 clusters

>>> kmeans = sklearn.cluster.KMeans(n_clusters=20)
>>> kmeans.fit(data)

>>> cluster_centers = kmeans.cluster_centers_

>>> cluster_centers.shape

(20, 2)

>>> cluster_centers

array([[ #.10556507, ©.48176175],
[ 9.48493465, 4.93921129],
[-0.67384089, 5.34791854],
[12.73048608, 2.78757872],
[12.16178039, 9.56285306],
6.959699191],

[ 4.14585321,



Cluster Centers
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Step 2) Create New Features

We've found k = 20 cluster centers, ", ..., 19,

Center a Gaussian RBF at each.
Take o = 3 for now.

We have k = 20 basis functions — 20
newfeatures for every data point X.



Creating the Features

def make_phi(center, sigma):
def phi(x):
return np.exp(
-np.linalg.norm(x - center, axis=1)**2 / sigmax*2

return phi

phis = [make_phi(center, 3) for center in cluster_centers]



Example

>>> phi_e = phis[oe]
>>> phi_e(np.array([[21, 21, [z, 51, [6, 711))
array([0.26507796, 0.10336246, 0.00597847])



Applying the Basis Functions

>>> new_features = np.column_stack([phi(data) for phi in phis])
>>> new_features.shape
(400, 20)



Step 3) Fitting the classifier

def augment(X):
return np.column_stack((
np.ones(len(X)),
X
))



Fitting the Classifier

>>> X = augment(new_features)
>>> w = np.linalg.lstsq(X, y)[o]
>>> predictions = np.sign(X @ w)
>>> # training accuracy

>>> (predictions == y).mean()
0.995



Decision Boundary
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Prediction Surface




What if...

What if we make o smaller?

=1
Seto-2



Small Sigma
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Small Sigma




Model Complexity

RBF network complexity is determined by:
Number of basis functions (more = more complex)
RBF width parameter (smaller = more complex)

Choose via cross validation

More complex = greater danger of overfitting



Representation Learning
This class is about “representation learning”

This is the first time we've actually learned a
representation.

Previously: chose basis functions by hand.

Today: we used k-means to learn good basis
functions using the data.
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Linear Algebra: Linear Transformations



And now for something completely
different...

This and the next few lectures will end with
linear algebra refreshers.



Vectors
A vector X is an arrow from the origin to a point.

We can make new arrows by:
scaling: aXx
addition: X +y
both: ax + By

| X|| is the norm (or length) of X



Linear Combinations

We can add together a bunch of arrows:

y=a, XD+ o, %+ e %M

This is a linear combination of X\, ..., x("



Decompositions

Consider the two vectors, ii("
and 4.

Claim: any vector X in R? can be
decomposed (written) as
X =au" + Bu®

™ and @ form a basis of R?




Bases
There was nothing special about & and &i®.
There are infinitely many bases of R?.

But there is one that is particularly natural...



Standard Basis Vectors
é") and é? are the standard basis vectors in RZ.

We write X = aé(V) + ge®

A




Coordinate Vectors

We often write a vector X as a coordinate vector:

X

R
x=1"2

1
X4

Meaning: X = x.éM + x.6@ + ...+ x @
1 2 d



Functions of a Vector

In ML, we often work with functions of a vector:
f:RY > RY,

Example: a prediction function, H(X).

Functions of a vector can return:
anumber: f : R - R’
avector f : RY -» RY
something else?



Transformations

A transformation f is a function that takes in a
vector, and returns a vector of the same
dimensionality.

Thatis, f : RY — RC.



Example

f,(X) halves horizontal component

f1(X)

X1




Example

f,(X) flips X over the dashed line.

X

f2(X)



Example

f3(X) projects X onto the horizontal axis.

rooXi

f3(X)



Example

f,(X) rotates X by 45" anticlockwise.

f3(%)

i




Linear Transformations

An arbitrary transformation can be quite
complex.

For mathematical ease, we may decide to
consider only linear transformations.

A transformation f is linear if:

flax + BY) = af(X) + Bf(¥)



By the way...

“Linear” functions, f(x) = mx + b, aren’t linear in
this sense (unless b = 0).

Rather call these “affine” functions.



Examples

All of the previous four transformations are
linear.

Another example: f(X) = (X, + X,, X, - X,)T
Non-example: f scales the input by the square
of its length.



Main Idea

We use linear functions (and linear transforma-
tions) because they are simple and easy to work
with mathematically.




The Simplicity of Linear
Transformations

Suppose f is an arbitrary transformation.
| tell you f(é™M) = (2,1)T and f(é®?) = (-3, 0)".
| tell you X = (x;, X,)".

What is f(X)?



The Simplicity of Linear
Transformations

Suppose f is a linear transformation.
| tell you f(é™M) = (2,1)T and f(é®?) = (-3, 0)".
| tell you X = (x;, X,)".

What is f(X)?



Suppose f is a linear transformation.

| tell you f(é™) = (2,1)" and f(é?) = (-3,0)".
| tell you X = (3,-4)".

What is f(X)?




Key Fact

Linear functions are determined entirely by what
they do on the basis vectors.

l.e., to tell you what f does, | only need to tell
you f(é™M) and f(e®).

This makes the math easy!



