DSC 190 Machine Learning: Representations

Lecture 6 | Part 1

Vectors

And now for something completely different...

This and the next lecture will be linear algebra refreshers.

- Today: what is a matrix?
- Next lecture: what are eigenvectors/values?

Vectors

- A vector \vec{x} is an arrow from the digin to a point.
- We can make new arrows by:
 - ► scaling: $\alpha \vec{x}$
 - ► addition: $\vec{x} + \vec{y}$
 - both: $\alpha \vec{x} + \beta \vec{y}$

 $\|\vec{x}\|$ is the **norm** (or length) of \vec{x}

Linear Combinations

We can add together a bunch of arrows:

$$\vec{y} = \alpha_1 \vec{x}^{(1)} + \alpha_2 \vec{x}^{(2)} + ... + \alpha_n \vec{x}^{(n)}$$

► This is a **linear combination** of $\vec{x}^{(1)}, ..., \vec{x}^{(n)}$

Parallel Vectors

Two vectors \vec{x} and \vec{y} are parallel if (and only if) there is a scalar λ such that $\vec{x} = \lambda \vec{y}$.

Standard Basis Vectors

 $\hat{e}^{(1)}$ and $\hat{e}^{(2)}$ are the standard basis vectors in \mathbb{R}^2 . $\|\hat{e}^{(1)}\| = \|\hat{e}^{(2)}\| = 1$

Standard Basis Vectors

 $\hat{e}^{(1)}, \dots, \hat{e}^{(d)}$ are the standard basis vectors in \mathbb{R}^d .

Decompositions

We can **decompose** any vector $\vec{x} \in \mathbb{R}^2$ in terms of $\hat{e}^{(1)}$ and $\hat{e}^{(1)}$

Write:
$$\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)}$$

Decompositions

- We can **decompose** any vector $\vec{x} \in \mathbb{R}^d$ in terms of $\hat{e}^{(1)}, \hat{e}^{(2)}, ..., \hat{e}^{(d)}$
 - Write: $\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + ... + x_d \hat{e}^{(d)}$

Coordinate Vectors

 \triangleright We often write a vector \vec{x} as a coordinate vector:

$$\vec{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \end{pmatrix}$$

Meaning: $\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + ... + x_d \hat{e}^{(d)}$

Dot Product

► The **dot product** of \vec{u} and \vec{v} is defined as:

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

where θ is the angle between \vec{u} and \vec{v} .

 $\vec{u} \cdot \vec{v} = 0$ if and only if \vec{u} and \vec{v} are orthogonal

Dot Product (Coordinate Form)

In terms of coordinate vectors:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

$$= (u_1 \quad u_2 \quad \cdots \quad u_d) \begin{pmatrix} v_1 \\ v_2 \\ \cdots \\ v_d \end{pmatrix}$$

$$||\vec{\lambda}|| \cdot ||\vec{v}|| c^{\sigma_2} \theta_{V_1 V_1} + U_2 V_2 + \cdots + U_d V_d$$

1)
$$\vec{\nabla} \cdot \vec{\nabla} = ||\vec{\nabla}|| ||\vec{\nabla}|| \cos \theta = ||\vec{\nabla}||^2$$

1 bec. $\theta = 0$ $||\vec{\nabla}|| = \sqrt{V_1^2 + V_2^2 + ... + V_d^2}$

$$\vec{\nabla} = \begin{pmatrix} V_1 \\ \vdots \\ V_d \end{pmatrix} \qquad \vec{\nabla} \cdot \vec{\nabla} = \begin{pmatrix} V_1 & V_2 & \dots & V_d \end{pmatrix} \begin{pmatrix} V_1 \\ \vdots \\ V_d \end{pmatrix} = \begin{pmatrix} V_1^2 + V_2^2 + \dots + V_d^2 \\ \vdots \\ V_d \end{pmatrix}$$

Show that
$$\vec{v} \cdot \vec{v} = ||\vec{v}||^2$$
.

Projections

If \hat{u} is a unit vector, $\vec{v} \cdot \hat{u}$ is the "part of \vec{v} that lies in the direction of \hat{u} ". $\vec{v} \cdot \hat{u} = ||\vec{v}|| ||\hat{y}|| \cos \theta$

Projections 🕏 🐔 🍪

Namely, if $\vec{x} = (x_1, ..., x_d)^T$, then $\vec{x} \cdot \hat{e}^{(k)} = x_k$.

DSC 190 Machine Learning: Representations

Lecture 6 | Part 2

Functions of a Vector

Functions of a Vector

- In ML, we often work with functions of a vector: $f: \mathbb{R}^d \to \mathbb{R}^{d'}$.
- Example: a prediction function, $H(\vec{x})$.
- Functions of a vector can return:
 - ightharpoonup a number: $f: \mathbb{R}^d \to \mathbb{R}^1$
 - ightharpoonup a vector $\vec{f}: \mathbb{R}^d \to \mathbb{R}^{d'}$
 - something else?

Transformations

- A transformation \vec{f} is a function that takes in a vector, and returns a vector of the same dimensionality.
- ▶ That is, $\vec{f} : \mathbb{R}^d \to \mathbb{R}^d$.

Visualizing Transformations

- ► A transformation is a vector field.
 - Assigns a vector to each point in space.
 - Example: $\vec{f}(\vec{x}) = (3x_1, x_2)^T$

$$\vec{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

$$f((1,2)) = (32)$$

 $f((-5,0)) = (-15)$

Example

$$\vec{f}(\vec{x}) = (3x_1, x_2)^T$$

Arbitrary Transformations

Arbitrary transformations can be quite complex.

Arbitrary Transformations

Arbitrary transformations can be quite complex.

$$f(x) = mx + b$$

$$f(ax_1+bx_2) = m(ax_1+bx_2)$$
Linear Transformations = amx_1+bmx_2

$$= af(x_1)+bf(x_2)$$

Luckily, we often¹ work with simpler, linear transformations.

► A transformation *f* is linear if:

$$\vec{f}(\alpha \vec{x} + \beta \vec{y}) = \alpha \vec{f}(\vec{x}) + \beta \vec{f}(\vec{y})$$

¹Sometimes, just to make the math tractable!

Implications of Linearity $\hat{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Suppose \vec{f} is a linear transformation. Then: $\chi = \chi(\hat{e}^{(i)} + \chi_{i})$

$$\vec{f}(\vec{x}) = \vec{f}(x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)})$$

$$= x_1 \hat{f}(\hat{e}^{(1)}) + x_2 \hat{f}(\hat{e}^{(2)})$$

▶ I.e., \vec{f} is **totally determined** by what it does to the basis vectors.

The Complexity of Arbitrary Transformations

- Suppose f is an arbitrary transformation.
- ► I tell you $\vec{f}(\hat{e}^{(1)}) = (2,1)^T$ and $\vec{f}(\hat{e}^{(2)}) = (-3,0)^T$.
- $\vdash \text{I tell you } \vec{x} = (x_1, x_2)^T.$
- ▶ What is $\vec{f}(\vec{x})$?

The Simplicity of Linear Transformations

- Suppose f is a linear transformation.
- ► I tell you $\vec{f}(\hat{e}^{(1)}) = (2,1)^T$ and $\vec{f}(\hat{e}^{(2)}) = (-3,0)^T$.
- $\vdash \text{I tell you } \vec{x} = (x_1, x_2)^T.$
- ▶ What is $\vec{f}(\vec{x})$?

$$\vec{f}(\vec{x}) = \vec{f}((3,-4)^{T}) = \vec{f}(3\hat{e}^{(1)} - 4\hat{e}^{(2)}) = 3f(\hat{e}^{(1)}) - 4f(\hat{e}^{(2)})$$

$$= 3f(\hat{e}^{(1)}) - 4f(\hat{e}^{(2)})$$
Exercise

• Suppose f is a linear transformation.
• I tell you $\vec{f}(\hat{e}^{(1)}) = (2,1)^{T}$ and $\vec{f}(\hat{e}^{(2)}) = (-3,0)^{T}$.
• I tell you $\vec{x} = (3,-4)^{T}$.
• What is $\vec{f}(\vec{x})$?

$$= \begin{pmatrix} 6 \\ 3 \end{pmatrix} + \begin{pmatrix} 12 \\ 0 \end{pmatrix} = \begin{pmatrix} 18 \\ 3 \end{pmatrix}$$

Key Fact

- Linear functions are determined **entirely** by what they do on the basis vectors.
- I.e., to tell you what f does, I only need to tell you $\vec{f}(\hat{e}^{(1)})$ and $\vec{f}(\hat{e}^{(2)})$.
- This makes the math easy!

Example Linear Transformation

$$\vec{f}(\vec{x}) = (x_1 + 3x_2, -3x_1 + 5x_2)^T \qquad f(2\hat{e}^{(*)})$$

Another Example Linear Transformation

$$\vec{f}(\vec{x}) = (2x_1 - x_2, -x_1 + 3x_2)^T$$

$$f(x) = f(-x) = -f(x)$$
Note

Because of linearity, along any given direction \vec{f} changes only in scale.

Thanges only in scale.

$$\vec{f}(\lambda \hat{x}) = \lambda \vec{f}(\hat{x})$$

$$f(\hat{z}^{(*)}) + \chi_2 f(\hat{z}^{(*)})$$

DSC 190 Machine Learning: Representations

Lecture 6 | Part 3

Matrices

Matrices?

► I thought this was supposed to be about linear algebra... Where are the matrices?

Matrices?

- ► I thought this was supposed to be about linear algebra... Where are the matrices?
- What is a matrix, anyways?

What is a matrix?

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

What is matrix multiplication?

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} (\frac{1}{2})(-z) + (z)(1) + (3)(3) \\ (\frac{1}{4})(-z) + (6)(1) + (6)(3) \\ (\frac{1}{7})(-z) + (8)(1) + (9)(3) \end{pmatrix}$$

A low-level definition

$$(A\vec{x})_i = \sum_{j=1}^n A_{ij} x_j$$

A low-level interpretation

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix} + 3 \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$$

In general...

 $\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{a}^{(1)} & \vec{a}^{(2)} & \vec{a}^{(3)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x \end{pmatrix} = x_1 \vec{a}^{(1)} + x_2 \vec{a}^{(2)} + x_3 \vec{a}^{(3)}$

What are they, really?

- Matrices are sometimes just tables of numbers.
- But they often have a deeper meaning.

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $\vec{f}: \mathbb{R}^n \to \mathbb{R}^n$.

What's more, if A represents \vec{f} , then $A\vec{x} = \vec{f}(\vec{x})$; that is, multiplying by A is the same as evaluating \vec{f} .

Recall: Linear Transformations

- A **transformation** $\vec{f}(\vec{x})$ is a function which takes a vector as input and returns a vector of the same dimensionality.
- ► A transformation *f* is **linear** if

$$\vec{f}(\alpha \vec{u} + \beta \vec{v}) = \alpha \vec{f}(\vec{u}) + \beta \vec{f}(\vec{v})$$

Recall: Linear Transformations

- A **key** property: to compute $\vec{f}(\vec{x})$, we only need to know what f does to basis vectors.
- Example:

$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$$

$$\vec{f}(\vec{x}) =$$

Matrices

- $ightharpoonup \vec{f}$ defined by what it does to basis vectors
- Place $\vec{f}(\hat{e}^{(1)})$, $\vec{f}(\hat{e}^{(2)})$, ... into a table as columns
- ► This is the matrix representing f

$$\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)} = \begin{pmatrix} -1\\3 \end{pmatrix}$$

$$\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)} = \begin{pmatrix} 2\\0 \end{pmatrix}$$

²with respect to the basis $\hat{e}^{(1)}$, $\hat{e}^{(2)}$

Example

$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}$$

$$\vec{f}(\hat{e}^{(1)}) = (1, 4, 7)^{T}$$

$$\vec{f}(\hat{e}^{(2)}) = (2, 5, 7)^{T}$$

$$\vec{f}(\hat{e}^{(3)}) = (3, 6, 9)^{T}$$

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$.

Matrix Multiplication

Matrix A represents a function f

Matrix multiplication $A\vec{x}$ evaluates $\vec{f}(\vec{x})$

Matrix Multiplication

$$\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)} + x_3 \hat{e}^{(3)} = (x_1, x_2, x_3)^T$$
$$\vec{f}(\vec{x}) = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

$$\vec{f}(\vec{x}) = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)})$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix}$$

$$\begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \uparrow & \uparrow & \uparrow \\ \downarrow & \uparrow & \uparrow \end{pmatrix} / x_1$$

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \\ A\vec{x} = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \vec{f}(\hat{e}^{(3)}) \\ \downarrow & \downarrow & \downarrow \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$AX = \begin{cases} f(e^{(1)}) & f(e^{(2)}) & f(e^{(3)}) \\ \downarrow & \downarrow \\ = x_1 \vec{f}(\hat{e}^{(1)}) + x_2 \vec{f}(\hat{e}^{(2)}) + x_3 \vec{f}(\hat{e}^{(3)}) \end{cases}$$

Example

Example
$$\vec{x} = 3\hat{e}^{(1)} - 4\hat{e}^{(2)} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
 $A =$

 $\vec{f}(\hat{e}^{(1)}) = -\hat{e}^{(1)} + 3\hat{e}^{(2)}$

 $\vec{f}(\vec{x}) = f\left(3e^{(1)} - 4e^{(2)}\right)$

 $\vec{f}(\hat{e}^{(2)}) = 2\hat{e}^{(1)}$

$$A = \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix}$$

Main Idea

A square $(n \times n)$ matrix can be interpreted as a compact representation of a linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$. Matrix multiplication with a vector \vec{x} evaluates $\vec{f}(\vec{x})$.

Note

- ightharpoonup All of this works because we assumed \vec{f} is **linear**.
- ▶ If it isn't, evaluating \vec{f} isn't so simple.

Note

- ightharpoonup All of this works because we assumed \vec{f} is **linear**.
- ▶ If it isn't, evaluating \vec{f} isn't so simple.
- Linear algebra = simple!