DSC 190 Machine Learning: Representations

Lecture 7 | Part 1

The Spectral Theorem

Eigenvectors

Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v}$.

Eigenvectors (of Linear Transformations)

Let \vec{f} be a linear transformation. An **eigenvector** of \vec{f} with **eigenvalue** λ is a nonzero vector \vec{v} such that $f(\vec{v}) = \lambda \vec{v}$.

Geometric Interpretation

- Mhen \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.
- That is, it doesn't rotate it.

$$\begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 3 & 4 \\ 3 & 2 & 7 \\ 4 & 7 & 5 \end{pmatrix} A_{ij} = A_{ji}$$

Symmetric Matrices

Recall: a matrix A is **symmetric** if $A^T = A$.

The Spectral Theorem¹

► **Theorem**: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

¹for symmetric matrices

What?

- What does the spectral theorem mean?
- What is an eigenvector, really?
- Why are they useful?

Example Linear Transformation

$$f(\hat{e}^{(1)}) \quad f(\hat{e}^{(2)})$$

$$\downarrow \qquad \qquad \downarrow$$

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Example Linear Transformation

$$A = \begin{pmatrix} -2 & -1 \\ -5 & 3 \end{pmatrix}$$

Example Symmetric Linear Transformation

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

Example Symmetric Linear Transformation

$$A = \begin{pmatrix} 2^{(2^{(2)})} \\ 5 \\ 0 \end{pmatrix}$$

Symmetric linear transformations have axes of symmetry.

The axes of symmetry are **orthogonal** to one another.

The action of \vec{f} along an axis of symmetry is simply to scale its input.

The size of this scaling can be different for each axis.

Main Idea

The **eigenvectors** of a symmetric linear transformation (matrix) are its axes of symmetry. The **eigenvalues** describe how much each axis of symmetry is scaled.

Example

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.1 \\ -0.1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.2 \\ -0.2 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.3 \\ -0.3 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.4 \\ -0.4 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.5 \\ -0.5 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.6 \\ -0.6 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.7 \\ -0.7 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.8 \\ -0.8 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.9 \\ -0.9 & 2 \end{pmatrix}$$

Why does $A^T = A$ result in symmetry?

The Spectral Theorem²

Theorem: Let A be an $n \times n$ symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

²for symmetric matrices

What about total symmetry?

Every vector is an eigenvector.

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

DSC 190 Machine Learning: Representations

Lecture 7 | Part 2

Why are eigenvectors useful?

OK, but why are eigenvectors³ useful?

- Eigenvectors are nice "building blocks" (basis vectors).
- ► Eigenvectors are **maximizers** (or minimizers).
- Eigenvectors are equilibria.

³of symmetric matrices

Eigendecomposition

- Any vector \vec{x} can be written in terms of the eigenvectors of a symmetric matrix.
- ► This is called its **eigendecomposition**.

$$\vec{\chi} = \chi_1 \hat{e}^{(0)} + \chi_2 \hat{e}^{(2)} \quad \chi_1 = \vec{\chi} \cdot \hat{e}^{(2)}$$

$$\qquad \qquad \chi_2 = \vec{\chi} \cdot \hat{e}^{(2)}$$

Observation #1 ||후(호)||

- $\vec{f}(\vec{x})$ is longest along the "main" axis of symmetry.
 - In the direction of the eigenvector with largest eigenvalue.

Main Idea

To maximize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the largest eigenvalue (in abs. value).

Main Idea

To minimize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the smallest eigenvalue (in abs. value).

Assume d=2

Proof

A is symm.

Show that the maximizer of $||A\vec{x}||$ s.t. $||\vec{x}|| = 1$ s the top eigenvector of A.

Let û, ü => to eigenvectors of A with eigenvalues

$$\vec{\chi} = \chi_1 \hat{\mathcal{U}}^{(1)} + \chi_2 \hat{\mathcal{U}}^{(2)}$$

$$||A\hat{\mathbf{x}}|| = ||A(\mathbf{x}_1\hat{\mathbf{u}}^{(1)} + \mathbf{x}_2\hat{\mathbf{u}}^{(2)})||$$

$$= ||\mathbf{x}_1\lambda_1\hat{\mathbf{u}}^{(2)} + \mathbf{x}_2\lambda_2\hat{\mathbf{u}}^{(2)}||$$

2+1 ×

$$= \sqrt{\chi_1^2 \lambda_1^2 + \chi_2^2 \lambda_2^2}$$

$$\lambda_1 > \lambda_2$$

Corollary

To maximize $\vec{x} \cdot A\vec{x}$ over unit vectors, pick \vec{x} to be top eigenvector of A.

Example

Maximize
$$4x_1^2 + 2x_2^2 + 3x_1x_2$$
 subject to $x_1^2 + x_2^2 = 1$
 $(x_1 \ x_2)$
 $(x_1 \ x_2)$
 $(x_1 \ x_2)$
 $(x_1 \ x_2)$
 $(x_2 \ x_2)$
 $(x_1 \ x_2)$

Observation #2

- $\vec{f}(\vec{x})$ rotates \vec{x} towards the "top" eigenvector \vec{v} .
- $ightharpoonup \vec{v}$ is an equilibrium.

The Power Method

- Method for computing the top eigenvector/value of A.
- Initialize $\vec{x}^{(0)}$ randomly

Repeat until convergence:

► Set
$$\vec{x}^{(i+1)} = A\vec{x}^{(i)} / ||A\vec{x}^{(i)}||$$

DSC 190 Machine Learning: Representations

Lecture 7 | Part 3

Diagonalization

Spectral Theorem (Again)

- **Theorem**: Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix Λ such that $A = U^T \Lambda U$.
- The rows of U are the eigenvectors of A, and the entries of Λ are its eigenvalues.

UU = I

U is said to diagonalize A.

Note about Bases

We to write the matrix representation of f, you must first choose a basis.

- If it isn't stated, we'll assume the standard basis.
- But we can also write a matrix representing f in some other basis.

$$f(\hat{u}^{(1)}) = 2\hat{u}^{(1)} + 3\hat{u}^{(2)} = (2,3)_{\mathcal{U}}^{\mathsf{T}}$$

$$f(\hat{u}^{(2)}) = -5\hat{u}^{(1)} - \hat{u}^{(2)} = (-5,-1)_{\mathcal{U}}^{\mathsf{T}}$$

$$A_{\mathcal{U}} = (-5,-1)_{\mathcal{U}}^{\mathsf{T}}$$

Eigenbasis
$$\begin{pmatrix} f(\hat{v}^{(i)}) & f(\hat{v}^{(i)}) \\ \lambda_i & 0 \\ 0 & \lambda_z \end{pmatrix}$$

- A basis of eigenvectors is particularly natural.
- Example: $\vec{f}(\vec{v}^{(1)}) = \lambda_1 \vec{v}^{(1)}, \vec{f}(\vec{v}^{(2)}) = \lambda_2 \vec{v}^{(2)}$
- Matrix representing \vec{f} in the eigenbasis:

Two Approaches

- Approach 1:
 - Write matrix for A w.r.t. standard basis
 - $\vec{f}(\vec{x}) = A\vec{x}$
- Approach 2:
 - Change basis to eigenbasis
 - Apply matrix representing \vec{f} in the eigenbasis (simple)
 - Change basis back to original basis

Spectral Theorem (Again)

- **Theorem**: Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix Λ such that $A = U^T \Lambda U$.
- Interpretation:
 - Change basis by multiplying by U
 - $ightharpoonup \Lambda$ is the representation of \vec{f} in the eigenbasis
 - ightharpoonup Change basis back by multiplying by U^T

Geometric Interpretation of $\vec{u} \cdot \vec{v}$

Change of Basis

$$\vec{x} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)}$$

 $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$

Change of Basis

Suppose $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ are our new, **orthonormal** basis vectors.

We know
$$\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)}$$

• We want to write
$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$$

Solution

$$b_1 = \vec{x} \cdot \hat{u}^{(1)}$$
 $b_2 = \vec{x} \cdot \hat{u}^{(2)}$

Example

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^T$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^T$$

$$\vec{X} = (1/2, 1)^T$$

Change of Basis Matrix

Changing basis is a linear transformation

$$f(\vec{x}) = (\vec{x} \cdot \hat{u}^{(1)})\hat{u}^{(1)} + (\vec{x} \cdot \hat{u}^{(2)})\hat{u}^{(2)} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \end{pmatrix}_{\mathcal{U}}$$

We can represent it with a matrix

$$\begin{pmatrix} \uparrow & \uparrow \\ f(\hat{e}^{(1)}) & f(\hat{e}^{(2)}) \\ \downarrow & \downarrow \end{pmatrix}$$

Example

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$

$$f(\hat{e}^{(1)}) =$$

$$f(\hat{e}^{(2)}) =$$

Change of Basis Matrix

- Multiplying by this matrix gives the coordinate vector w.r.t. the new basis.
- Example:

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$

$$A = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}$$

$$\vec{x} = (1/2, 1)^{T}$$

Change to Eigenbasis

► It can be shown that the matrix which changes basis to the eigenbasis of A is the orthogonal matrix U, whose rows are the eigenvectors of A.