DSC 190 Machine Learning: Representations

Lecture 8 | Part 1

Dimensionality Reduction

High Dimensional Data

- Data is often high dimensional (many features)
- Example: Netflix user
 - Number of movies watched
 - Number of movies saved
 - Total time watched
 - Number of logins
 - Days since signup
 - Average rating for comedy
 - Average rating for drama
 - •

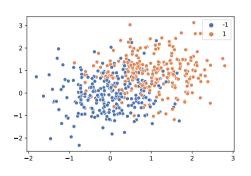
High Dimensional Data

- More features can give us more information
- But it can also cause problems
- ► **Today**: how do we reduce dimensionality without losing too much information?

More Features, More Problems

- Difficulties with high dimensional data:
 - 1. Requires more compute time / space
 - 2. Hard to visualize / explore
 - 3. The "curse of dimensionality": it's harder to learn

Experiment



- On this data, low 80% train/test accuracy
- Add 400 features of pure noise, re-train
- Now: 100% train accuracy,58% test accuracy
- Overfitting!

Task: Dimensionality Reduction

- We'd often like to reduce the dimensionality to improve performance, or to visualize.
- We will typically lose information
- ► Want to minimize the loss of useful information

Redundancy

Two (or more) features may share the same information.

Intuition: we may not need all of them.

Today

- Today we'll think about reducing dimensionality from \mathbb{R}^d to \mathbb{R}^1
- Next time we'll go from \mathbb{R}^d to $\mathbb{R}^{d'}$, with $d' \leq d$

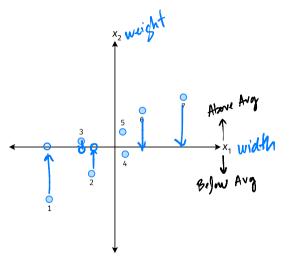
Today's Example

- Let's say we represent a phone with two features:
 - \triangleright x_1 : screen width
 - $\triangleright x_2$: phone weight
- Both measure a phone's "size".
- Instead of representing a phone with both x_1 and x_2 , can we just use a single number, z?
 - Reduce dimensionality from 2 to 1.

First Approach: Remove Features

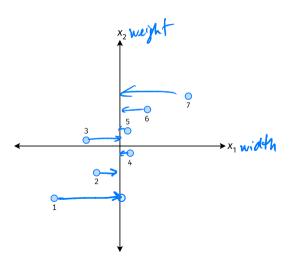
- Screen width and weight share information.
- ▶ **Idea:** keep one feature, remove the other.
- ► That is, set new feature $z = x_1$ (or $z = x_2$).

Removing Features



- Say we set $z^{(i)} = \vec{x}_1^{(i)}$ for each phone, *i*.
- Observe: $z^{(4)} > z^{(5)}$.
- Is phone 4 really "larger" than phone 5?

Removing Features



- Say we set $z^{(i)} = \vec{x}_2^{(i)}$ for each phone, *i*.
- Observe: $z^{(3)} > z^{(4)}$.
- Is phone 3 really "larger" than phone 4?

Better Approach: Mixtures of Features

- ▶ **Idea**: z should be a combination of x_1 and x_2 .
- One approach: linear combination.

$$z = u_1 x_1 + u_2 x_2$$

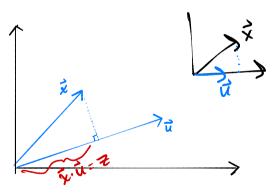
$$= \vec{u} \cdot \vec{x}$$

 $u_1, ..., u_2$ are the mixture coefficients; we can choose them.

Normalization

- Mixture coefficients generalize proportions.
- ► We could assume, e.g., $|u_1| + |u_2| = 1$.
- But it makes the math easier if we assume $u_1^2 + u_2^2 = 1$.
- ► Equivalently, if $\vec{u} = (u_1, u_2)^T$, assume $\|\vec{u}\| = 1$

Geometric Interpretation



- ightharpoonup z measures how much of \vec{x} is in the direction of \vec{u}
- ► If $\vec{u} = (1,0)^T$, then $z = x_1$
- ► If $\vec{u} = (0, 1)^T$, then $z = x_2$

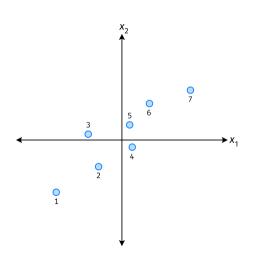
$$u=(1,0)$$
 $z=\vec{u}\cdot\vec{x}=(1,0)^{T}\begin{pmatrix} X_{1}\\ X_{2} \end{pmatrix}=x_{1}$

Choosing \vec{u}

- Suppose we have only two features:
 - \triangleright x_1 : screen size
 - $\triangleright x_3$: phone thickness
- ▶ We'll create single new feature, z, from x_1 and x_2 .

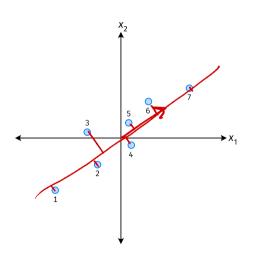
 - Assume $z = u_1x_1 + u_2x_2 = \vec{x} \cdot \vec{u}$ Interpretation: z is a measure of a phone's size
- ► How should we choose $\vec{u} = (u_1, u_2)^t$?

Example



- \vec{u} defines a direction
- $\vec{z}^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example



- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- Idea: u should point in direction of "max variance".

Our Algorithm (Informally)

- ► **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- ightharpoonup Pick \vec{u} to be the direction of "max variance"

Create a new feature, z, for each point:

$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$

PCA

- ► This algorithm is called Principal Component Analysis, or PCA.
- ► The direction of maximum variance is called the **principal component**.

Exercise

Suppose the direction of maximum variance in a data set is

$$\vec{u} = (1/\sqrt{2}, -1/\sqrt{2})^{T}$$

$$\vec{x}^{(2)} = (1 \ 4)^T$$

$$\vec{u} = (1/\sqrt{2}, -1/\sqrt{2})^{T}$$
Let
$$\vec{x}^{(1)} = (3, -2)^{T}$$

$$\vec{x}^{(2)} = (1, 4)^{T}$$

$$\vec{x}^{(2)} = (1, 4)^{T}$$

$$\vec{x}^{(3)} = (3, -2)^{T}$$

$$\vec{x}^{(2)} = (1, 4)^{T}$$

What are $z^{(1)}$ and $z^{(2)}$?

$$z^{(2)} = \overline{\chi}^{(2)} \cdot \overline{\chi} = (1, 4)^{\frac{1}{2}} \cdot (\frac{1}{2}, -\frac{1}{2})^{\frac{1}{2}}$$

$$= \frac{1}{\sqrt{2}} - \frac{4}{\sqrt{2}} = \frac{-3}{\sqrt{2}}$$

Problem

How do we compute the "direction of maximum variance"?

DSC 190 Machine Learning: Representations

Lecture 8 | Part 2

Covariance Matrices

Variance

We know how to compute the variance of a set of numbers $X = \{x^{(1)}, ..., x^{(n)}\}$:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)^2$$

The variance measures the "spread" of the data

Generalizing Variance

If we have two features, x_1 and x_2 , we can compute the variance of each as usual:

$$Var(x_1) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_1^{(i)} - \mu_1)^2$$

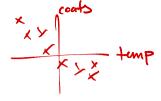
$$Var(x_2) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_2^{(i)} - \mu_2)^2$$

 \triangleright Can also measure how x_1 and x_2 vary together.

Measuring Similar Information

- Features which share information if they vary together.
 - A.k.a., they "co-vary"
- Positive association: when one is above average, so is the other

Negative association: when one is above average, the other is below average

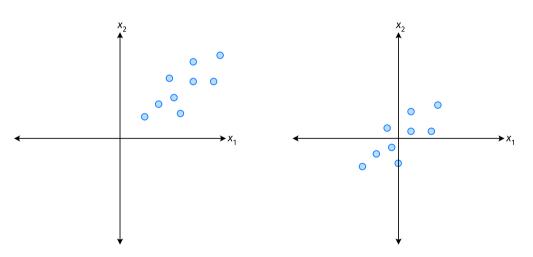


Examples

- Positive: temperature and ice cream cones sold.
- Positive: temperature and shark attacks.
- Negative: temperature and coats sold.

Centering

First, it will be useful to center the data.



Centering

► Compute the mean of each feature:

$$\mu_j = \frac{1}{n} \sum_{1}^{n} \vec{x}_j^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \begin{pmatrix} \vec{x}_1^{(i)} - \mu_1 \\ \vec{x}_2^{(i)} - \mu_2 \\ \vdots \\ \vec{x}_d^{(i)} - \mu_d \end{pmatrix}$$

Centering (Equivalently)

Compute the mean of all data points:

$$\vec{\mu} = \frac{1}{n} \sum_{1}^{n} \vec{x}^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \vec{x}^{(i)} - \vec{\mu}$$

Exercise

Center the data set:

$$\vec{x}^{(1)} = (1,2,3)^{T} \rightarrow (1,2,3) - (0,1,2) + (1,1,1)^{T}$$

$$\vec{x}^{(2)} = (-1,-1,0)^{T} \rightarrow (-1,-2,-2)^{T}$$

$$\vec{x}^{(3)} = (0,2,3)^{T}$$

$$\vec{M} = (\vec{x}^{(1)} + \vec{x}^{(2)} + \vec{x}^{(2)}) = \vec{3}(0, 3, 6)^T = (0, 1, 2)^T$$

► One approach is as follows¹.

Cov
$$(x_i, x_j) = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

- For each data point, multiply the value of feature *i* and feature *i*, then average these products.
- This is the **covariance** of features *i* and *j*.

¹Assuming centered data

Assume the data are centered.

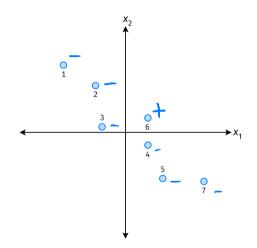
Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

$$\frac{1}{7} \times \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

$$\frac{1}{7} \times \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

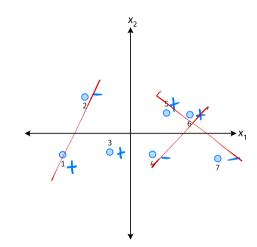
Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



 Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$



- ► The **covariance** quantifies extent to which two variables vary together.
- Assume we have centered the data.

► The **sample covariance** of feature *i* and *j* is:

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Exercise

True or False: $\sigma_{ij} = \sigma_{ji}$? $\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$

$$\sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

Covariance Matrices $\begin{array}{c} \sigma_{11} & \sigma_{12} & \sigma_{23} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \sigma_{22} & \cdots & \sigma_{2d} \end{array}$ $\begin{array}{c} \sigma_{11} & \sigma_{12} & \sigma_{22} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \sigma_{22} & \cdots & \sigma_{2d} \end{array}$

- ► Given data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$.
- ▶ The sample covariance matrix C is the $d \times d$ matrix whose ij entry is defined to be σ_{ii} .

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

Observations

- Diagonal entries of C are the variances.
- ► The matrix is **symmetric**!

Note

Sometimes you'll see the sample covariance defined as:

$$\sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

- Note the 1/(n-1)
- This is an **unbiased** estimator of the population covariance.
- ▶ Our definition is the **maximum likelihood** estimator.
- ► In practice, it doesn't matter: $1/(n-1) \approx 1/n$.
- For consistency, in this class use 1/n.

Computing Covariance

There is a "trick" for computing sample covariance matrices.

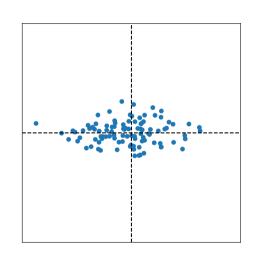
- Step 1: make $n \times d$ data matrix, X
- Step 2: make Z by centering columns of X
- ► Step 3: $C = \frac{1}{n}Z^TZ$

```
>>> mu = X.mean(axis=0)
>>> Z = X - mu
>>> C = 1 / len(X) * Z.T @ Z
```

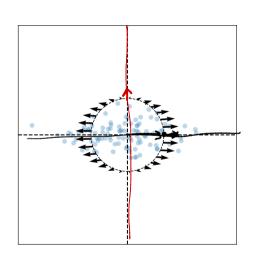
DSC 190 Machine Learning: Representations

Lecture 8 | Part 3

- Covariance matrices are symmetric.
- They have axes of symmetry (eigenvectors and eigenvalues).
- What are they?

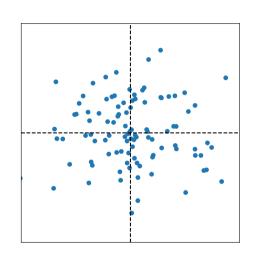


$$\begin{cases} C \approx \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} \end{cases}$$

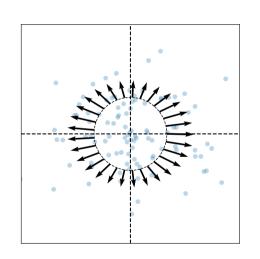


Eigenvectors:

$$\vec{u}^{(1)} \approx (1,0)^{\dagger} \lambda_1 = 5$$
 $\vec{u}^{(2)} \approx (0,1)^{\top} \lambda_2 = 2$

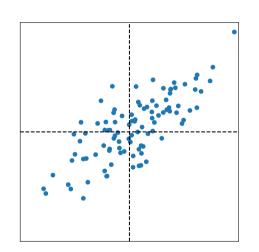


$$C \approx \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$

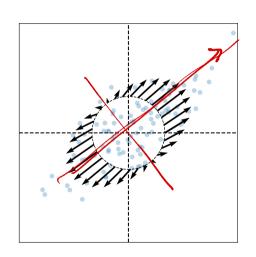


Eigenvectors:

$$\vec{u}^{(1)} \approx \text{Any direction}$$
 $\vec{u}^{(2)} \approx \text{Any direction}$



$$C \approx \begin{pmatrix} 5 & 3 \\ 3 & 3 \end{pmatrix}$$



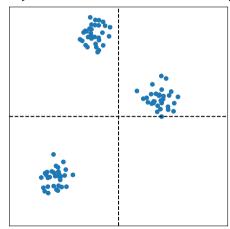
Eigenvectors:

$$\vec{u}^{(1)} \approx (1/2, 1/2)^T$$
 $\vec{u}^{(2)} \approx$

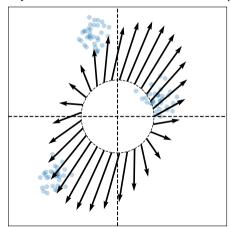
Intuitions

- The **eigenvectors** of the covariance matrix describe the data's "principal directions" *C* tells us something about data's shape.
- ► The **top eigenvector** points in the direction of "maximum variance".
- ► The **top eigenvalue** is proportional to the variance in this direction.

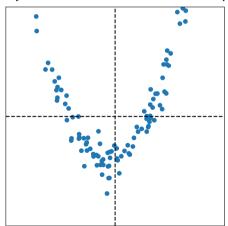
- ► The data doesn't always look like this.
- ► We can always compute covariance matrices.
- ► They just may not describe the data's shape very well.



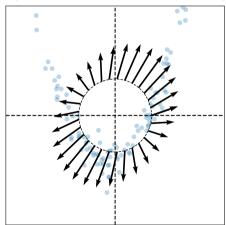
- ► The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



- ► The data doesn't always look like this.
- ► We can always compute covariance matrices.
- ► They just may not describe the data's shape very well.



- ► The data doesn't always look like this.
- We can always compute covariance matrices.
- They just may not describe the data's shape very well.



DSC 190 Machine Learning: Representations

Lecture 8 | Part 4

PCA, More Formally

The Story (So Far)

- We want to create a single new feature, z.
- Our idea: $z = \vec{x} \cdot \vec{u}$; choose \vec{u} to point in the "direction of maximum variance".
- Intuition: the top eigenvector of the covariance matrix points in direction of maximum variance.

More Formally...

We haven't actually defined "direction of maximum variance"

Let's derive PCA more formally.

Variance in a Direction

- ► Let \vec{u} be a unit vector.
- $z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ is the new feature for $\vec{x}^{(i)}$.
- ► The variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)} - \mu_z)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u} - \mu_z)^2$$

Example



Note

If the data are centered, then $\mu_z = 0$ and the variance of the new features is:

$$Var(z) = \frac{1}{n} \sum_{i=1}^{n} (z^{(i)})^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^{2}$$

Goal

▶ The variance of a data set in the direction of \vec{u} is:

$$g(\vec{u}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{u})^2$$

ightharpoonup Our goal: Find a unit vector \vec{u} which maximizes g.

Claim

$$\frac{1}{n}\sum_{i=1}^{n}\left(\vec{x}^{(i)}\cdot\vec{u}\right)^{2}=\vec{u}^{T}C\vec{u}$$

Our Goal (Again)

Find a unit vector \vec{u} which maximizes $\vec{u}^T C \vec{u}$.

Claim

To maximize $\vec{u}^T C \vec{u}$ over unit vectors, choose \vec{u} to be the top eigenvector of C.

Proof:

PCA (for a single new feature)

- ► **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- 1. Compute the covariance matrix, C.
- 2. Compute the top eigenvector \vec{u} , of C.
- 3. For $i \in \{1, ..., n\}$, create new feature:

$$z^{(i)} = \vec{u} \cdot \vec{x}^{(i)}$$

A Parting Example

- MNIST: 60,000 images in 784 dimensions
- Principal component: $\vec{u} \in \mathbb{R}^{784}$
- We can project an image in \mathbb{R}^{784} onto \vec{u} to get a single number representing the image

Example

