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Lecture 9 Part1

PCA, More Formally



The Story (So Far)

We want to create a single new feature, z.

Our idea: z = X - U; choose i to point in the
“direction of maximum variance”.

Intuition: the top eigenvector of the covariance
matrix points in direction of maximum variance.



More Formally...

We haven't actually defined “direction of
maximum variance”

Let's derive PCA more formally.



Variance in a Direction

Let U be a unit vector.
20 = 0. i is the new feature for X,

The variance of the new features is:

Var(z)= 13 (20 - 17



Example

v



Note

If the data are centered, then p, = 0 and the
variance of the new features is:

Var(z) = = > (20



Goal

The variance of a data set in the direction of i is:

NQ MaYg(G)=%i(7<(i).g,)2 s, |lull=4

Our goal: Find a unit vector & which maximizes g.
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Our Goal (Again)

Find a unit vector 4 which maximizes i Cu.



Claim ' g
Assume C 15 5\31!\«#:\‘\1‘(0. ’\;ﬁv.

To maximize U’ Cii over unit vectors, choose i to
be the top eigenvector of C.
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Claim

To maximize U’ Cii over unit vectors, choose i to
be the top eigenvector of C.
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Claim

To maximize U’ Cii over unit vectors, choose i to
be the top eigenvector of C.

Proof: g Ci= b A, Ui Az
Tor 0 b b a undt vechy, WZ+u; -1

o waximize, st U= | .o, =0
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aCo st uh-~1.



PCA (for a single new feature)
Given: data points ("), ..., X" e RY

Compute the covariance matrix, C.
wlCu v

Qoo

Compute the top eigenvector i, of C.

Fori € {1, ..., n}, create new feature:

20 = . )
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Dimensionality Reduction with d > 2



So far: PCA
Given: data X", ..., (" e R4

Map: each data point X" to a single feature, z,.
Idea: maximize the variance of the new feature

PCA: Let z; = X - {l, where i is top eigenvector of
covariance matrix, C.



Today: More PCA

Given: data X", ..., (" e R4

Map: each data point X) to k new features,

2= @),..., 24).



A Single Principal Component

Recall: the principal component is the top
eigenvector U of the covariance matrix, C

It is a unit vector in RY

Make a new feature z € R for point X € R? by
computingz=X- 0

This is dimensionality reduction from R? —» R’



Example
MNIST: 60,000 images in 784 dimensions
Principal component: i € R’8*

We can project an image in R’®* onto i to get a
single number representing the image



Example
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Another Feature?

Clearly, mapping from R’8* — R loses a lot of
information

What about mapping from R’%* — R2? RF?



A Second Feature

Our first feature is a mixture of features, with weights

given by unit vector 1 = &, u., ).

_ a3 (1) (1)
Z,=U X =U X1+...+UdXd

To maximize variance, choose " to be top
eigenvector of C.



A Second Feature

Make same assumption for second feature:

_PQ) .3 (2) (2)
Z,=U X =U X1+...+UdXd

How do we choose ??

We should choose ii® to be orthogonal to i(".
No “redundancy”.



A Second Feature
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A Second Feature - \u
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Claim: if U and v are eigenvectors of a symmetric
matrix with distinct eigenvalues, they are
orthogonal.

We should choose ii? to be an eigenvector of
the covariance matrix, C.

The second eigenvector of C is called the second
principal component.



A Second Principal Component
Given a covariance matrix C.

The principal component (") is the top
eigenvector of C.
Points in the direction of maximum variance.

The second principal component i‘? is the
second eigenvector of C.

Out of all vectors orthogonal to the principal
component, points in the direction of max variance.



PCA: Two Components
Given data {x("), ..., XM} e RY.

Compute covariance matrix C, top two
eigenvectors (" and .

For any vector X € R, its new representation in

R?is Z = (z,,2,)", where:
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Example
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PCA: kR Components

Given data {Xx", .., XM} € RY, number of components k.

Compute covariance matrix C, top k < d eigenvectors 4",
02 (k)
u?, ..., a".

S d. . .
For any vector X € R, its new representation in R is
Z=(z,,2,..2,)", where:
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Matrix Formulation
Let X be the data matrix (n rows, d columns)

Let U be matrix of the k eigenvectors as columns
(d rows, kR columns)

The new representation: Z = XU
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Reconstructions



Reconstructing Points

PCA helps us reduce dimensionality from
R? - RF

Suppose we have the “new” representation in RX.
Can we “go back” to R9?

And why would we want to?



Back to R

wu‘fﬁw‘
Suppose new
representation of X is z.

-

z=%-0"

Idea: X = zu™




Reconstructions
Given a “new” representation of X, Z = (z,,...,2,) € R*

And top k eigenvectors, ii"), ..., i)

The reconstruction of X is

z.0M 4+ 220(2) .. zkﬁ(k) =UZ

1



Reconstruction Error

The reconstruction approximates N,
the original point, X. ‘j««("‘
\ o
. ‘ 2
The reconstruction error for a v e
single point, X: /

IX - uz||®

Total reconstruction error:

Streen  size

IX0 - uz0)2

n
i=1
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Interpreting PCA



Three Interpretations
What is PCA doing?

Three interpretations:
Mazimizing variance
Finding the best reconstruction
Decorrelation



Recall: Matrix Formulation
Given data matrix X.
Compute new data matrix Z = XU.
PCA: choose U to be matrix of eigenvectors of C.

For now: suppose U can be anything - but
columns should be orthonormal
Orthonormal = “not redundant”



View #1: Maximizing Variance
This was the view we used to derive PCA

Define the total variance to be the sum of the
variances of each column of Z.

Claim: Choosing U to be top eigenvectors of C
maximizes the total variance among all choices
of orthonormal U.



Main Idea

PCA maximizes the total variance of the new data.
l.e., chooses the most “interesting” new features
which are not redundant.




View #2: Minimizing Reconstruction
Error

Recall: total reconstruction error

IX0 - uz0)2

n
=1
Goal: minimize total reconstruction error.

Claim: Choosing U to be top eigenvectors of C minimizes
reconstruction error among all choices of orthonormal U



PCA minimizes the reconstruction error. It is the
“best” projection of points onto a linear subspace
of dimensionality k. When k = d, the reconstruc-
tion error is zero.




View #3: Decorrelation

PCA has the effect of “decorrelating” the features.
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PCA learns a new representation by rotating the
data into a basis where the features are uncorre-
lated (not redundant). That is: the natural basis

vectors are the principal directions (eigenvectors
of the covariance matrix). PCA changes the basis
to this natural basis.




PCA in Practice

PCA is often used in preprocessing before
classifier is trained, etc.

Must choose number of dimensions, R.
One way: cross-validation.

Another way: the elbow method.



Total Variance

The total variance is the sum of the eigenvalues
of the covariance matrix.

Or, alternatively, sum of variances in each
orthogonal basis direction.
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Demos



