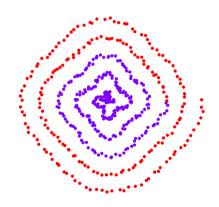
DSC 190 Machine Learning: Representations

Lecture 10 | Part 1

Nonlinear Dimensionality Reduction

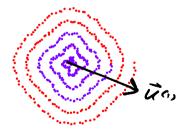
Scenario

- You want to train a classifier on this data.
- It would be easier if we could "unroll" the spiral.
- Data seems to be one-dimensional, even though in two dimensions.
- Dimensionality reduction?



PCA?

- Does PCA work here?
- Try projecting onto one principal component.



No

PCA?

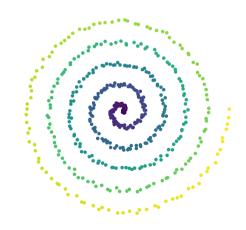
- PCA simply "rotates" the data.
- ▶ No amount of rotation will "unroll" the spiral.

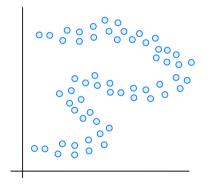
We need a fundamentally different approach that works for non-linear patterns.

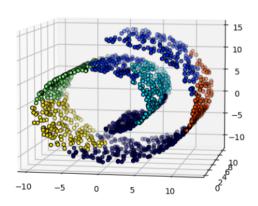
Today

Non-linear dimensionality reduction via spectral embeddings.

- Each point is an (x, y) coordinate in two dimensional space
- But the structure is one-dimensional
- Could (roughly) locate point using one number: distance from end.



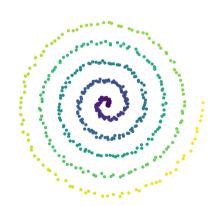




- ► Informally: data expressed with *d* dimensions, but its *really* confined to *k*-dimensional region
- This region is called a manifold
- d is the ambient dimension
- ▶ *k* is the **intrinsic** dimension

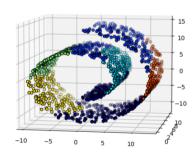
► Ambient dimension: 2

Intrinsic dimension: 1



► Ambient dimension: 3

► Intrinsic dimension: 2



► Ambient dimension:

► Intrinsic dimension:

Manifold Learning

► **Given**: data in high dimensions

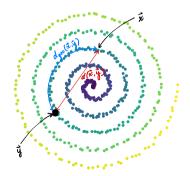
▶ **Recover**: the low-dimensional manifold

Types of Manifolds

- Manifolds can be linear
 - E.g., linear subpaces hyperplanes
 - Learned by PCA
- Can also be non-linear (locally linear)
 - Example: the spiral data
 - Learned by Laplacian eigenmaps, among others

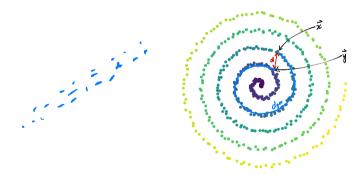
Euclidean vs. Geodesic Distances

- **Euclidean distance**: the "straight-line" distance
- ► **Geodesic distance**: the distance along the manifold



Euclidean vs. Geodesic Distances

- **Euclidean distance**: the "straight-line" distance
- ► **Geodesic distance**: the distance along the manifold



Euclidean vs. Geodesic Distances

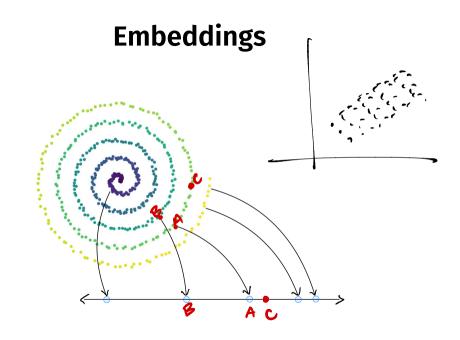
► If data is close to a linear manifold, geodesic ≈ Euclidean

Otherwise, can be very different

Non-Linear Dimensionality Reduction

▶ **Goal**: Map points in \mathbb{R}^d to \mathbb{R}^k

Such that: if \vec{x} and \vec{y} are close in **geodesic** distance in \mathbb{R}^d , they are close in **Euclidean** distance in \mathbb{R}^k



DSC 190 Machine Learning: Representations

Lecture 10 | Part 2

Embedding Similarities

Similar Netflix Users

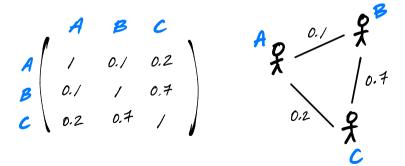
- Suppose you are a data scientist at Netflix
- ► You're given an *n* × *n* similarity matrix *W* of users
 - \triangleright entry (i,j) tells you how similar user i and user j are
 - ▶ 1 means "very similar", 0 means "not at all"
- Goal: visualize to find patterns

Idea

- We like scatter plots. Can we make one?
- Users are not vectors / points!
- They are nodes in a similarity graph

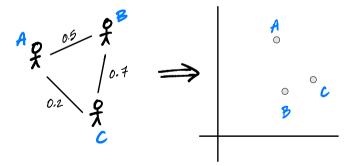
Similarity Graphs

Similarity matrices can be thought of as weighted graphs, and vice versa.



Goal

- **Embed** nodes of a similarity graph as points.
- Similar nodes should map to nearby points.



Today

- We will design a graph embedding approach:
 - ► Spectral embeddings via Laplacian eigenmaps

More Formally

- Given:
 - A similarity graph with *n* nodes
 - \triangleright a number of dimensions, k
- **Compute**: an **embedding** of the n points into \mathbb{R}^k so that similar objects are placed nearby

To Start

- Given:
 - A similarity graph with *n* nodes
- ▶ **Compute**: an **embedding** of the *n* points into \mathbb{R}^1 so that similar objects are placed nearby

Vectors as Embeddings into \mathbb{R}^1

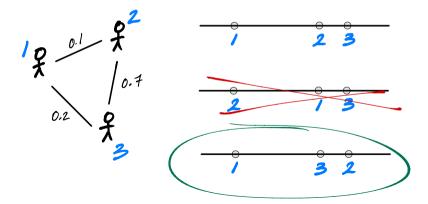
- Suppose we have n nodes (objects) to embed
- ► Assume they are numbered 1, 2, ..., n
- ► Let $f_1, f_2, ..., f_n \in \mathbb{R}$ be the embeddings
- ightharpoonup We can pack them all into a vector: \vec{f} .
- ► Goal: find a good set of embeddings, \vec{f} .

$$\vec{f} = (1, 3, 2, -4)^T$$

An Optimization Problem

- We'll turn it into an optimization problem:
- Step 1: Design a cost function quantifying how good a particular embedding \vec{f} is
- ► **Step 2**: Minimize the cost

Which is the best embedding?



Cost Function for Embeddings

- Idea: cost is low if similar points are close
- Here is one approach:

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

 \triangleright where w_{ii} is the weight between i and j.

Interpreting the Cost

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

- If $w_{ij} \approx 0$, that pair can be placed very far apart without increasing cost
- If $w_{ij} \approx 1$, the pair should be placed close together in order to have small cost.

Exercise

Do you see a problem with the cost function?

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

Hint: what embedding \vec{f} minimizes it?

Problem

- The cost is **always** minimized by taking $\vec{f} = 0$.
- ► This is a "trivial" solution. Not useful.
- ▶ **Fix**: require $\|\vec{f}\| = 1$
 - Really, any number would work. 1 is convenient.

Exercise

Do you see **another** problem with the cost function, even if we require \vec{f} to be a unit vector?

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

Hint: what other choice of \vec{f} will **always** make this zero?

Problem

- The cost is **always** minimized by taking $\vec{f} = \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$.
- ► This is a "trivial" solution. Again, not useful.
- **Fix**: require \vec{f} to be orthogonal to $(1, 1, ..., 1)^T$.
 - ► Written: $\vec{f} \perp (1, 1, ..., 1)^T$
 - Ensures that solution is not close to trivial solution
 - Might seem strange, but it will work!

The New Optimization Problem

- **Given**: an $n \times n$ similarity matrix W
- **Compute**: embedding vector \vec{f} minimizing

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

How?

- ► This looks difficult.
- Let's write it in matrix form.

We'll see that it is actually (hopefully) familiar.

DSC 190 Machine Learning: Representations

Lecture 10 | Part 3

The Graph Laplacian

The Problem

Compute: embedding vector \vec{f} minimizing

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$

subject to
$$\|\vec{f}\| = 1$$
 and $\vec{f} \perp (1, 1, ..., 1)^T$

Now: write the cost function as a matrix expression.

The Degree Matrix

- Recall: in an unweighted graph, the degree of node i equals number of neighbors.
- Equivalently (where A is the adjacency matrix):

$$degree(i) = \sum_{i=1}^{n} A_{ij}$$

► Since $A_{ij} = 1$ only if j is a neighbor of i

$$dig(u) = .1 + .1 + .2 + .3 = .7$$

The Degree Matrix

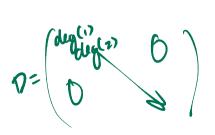
In a weighted graph, define degree of node i similarly:

$$degree(i) = \sum_{i=1}^{n} w_{ij}$$

▶ That is, it is the total weight of all neighbors.

The Degree Matrix

► The **degree matrix** *D* of a weighted graph is the diagonal matrix where entry (*i*, *i*) is given by:



$$d_{ii} = \text{degree}(i)$$
$$= \sum_{j=1}^{n} w_{ij}$$

The Graph Laplacian

- ▶ Define L = D W
 - D is the degree matrix
 - W is the similarity matrix (weighted adjacency)

- L is called the **Graph Laplacian** matrix.
- ► It is a very useful object

Very Important Fact

Claim:

Cost(
$$\vec{f}$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = \frac{1}{2} \vec{f}^T L \vec{f}$

Proof: expand both sides

Proof

DSC 190 Machine Learning: Representations

Lecture 10 | Part 4

Solving the Optimization Problem

A New Formulation

- ► **Given**: an $n \times n$ similarity matrix W
- ▶ Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \frac{1}{2}\vec{f}^T L \vec{f}$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

► This might sound familiar...

Recall: PCA

► **Given**: a *d* × *d* covariance matrix *C*

Find: vector \vec{u} maximizing the variance in the direction of \vec{u} :

 $\vec{u}^T C \vec{u}$

subject to $\|\vec{u}\| = 1$.

Solution: take \vec{u} = top eigenvector of C

A New Formulation

- Forget about orthogonality constraint for now.
- ▶ Compute: embedding vector \vec{f} minimizing

$$Cost(\vec{f}) = \frac{1}{2}\vec{f}^{\mathsf{T}}L\vec{f}$$

subject to $\|\vec{f}\| = 1$.

- **Solution**: the *bottom* eigenvector of *L*.
 - ► That is, eigenvector with smallest eigenvalue.

Claim

- The bottom eigenvector is $\vec{f} = \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$
- ▶ It has associated eigenvalue of 0.
- ► That is, $L\vec{f} = 0\vec{f} = \vec{0}$

Spectral¹ **Theorem**

Theorem

If A is a symmetric matrix, eigenvectors of A with distinct eigenvalues are orthogonal to one another.

¹"Spectral" not in the sense of specters (ghosts), but because the eigenvalues of a transformation form the "spectrum"

The Fix

- Remember: we wanted \vec{f} to be orthogonal to $\frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$.
 - i.e., should be orthogonal to bottom eigenvector of *L*.
- Fix: take \vec{f} to the be eigenvector of L with with smallest eigenvalue $\neq 0$.
- ► Will be $\pm \frac{1}{\sqrt{n}}(1, 1, ..., 1)^T$ by the **spectral theorem**.

Spectral Embeddings: Problem

Given: similarity graph with *n* nodes

Compute: an embedding of the
$$n$$
 points into \mathbb{R}^1 so that similar objects are placed nearby

Formally: find embedding vector \vec{f} minimizing

$$\left(\bigvee_{i=1}^{n} \bigvee_{j=1}^{n} \sum_{i=1}^{n} w_{ij} (f_i - f_j)^2 = \frac{1}{2} \vec{f}^T L \vec{f}$$

subject to $\|\vec{f}\| = 1$ and $\vec{f} \perp (1, 1, ..., 1)^T$

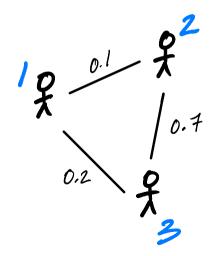
Spectral Embeddings: Solution

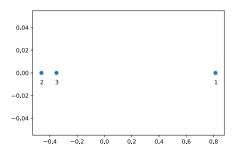
- Form the graph Laplacian matrix, L = D W
- Choose \vec{f} be an eigenvector of L with smallest eigenvalue > 0
- This is the embedding!

Example

```
W = np.array([
    [1, 0.1, 0.2],
    [0.1, 1, 0.7].
    [0.2, 0.7, 1]
D = np.diag(W.sum(axis=1))
vals, vecs = np.linalg.eigh(L)
f = vecs[:,1]
```

Example





Embedding into \mathbb{R}^k

- ▶ This embeds nodes into \mathbb{R}^1 .
- ightharpoonup What about embedding into \mathbb{R}^{k} ?
- Natural extension: find bottom k eigenvectors with eigenvalues > 0

New Coordinates

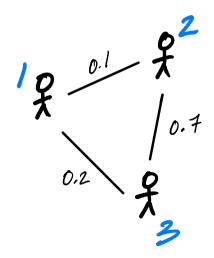
- With k eigenvectors $\vec{f}^{(1)}$, $\vec{f}^{(2)}$, ..., $\vec{f}^{(k)}$, each node is mapped to a point in \mathbb{R}^k .
- Consider node i.
 - First new coordinate is $\vec{f}_i^{(1)}$.

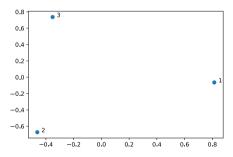
 Second new coordinate is $\vec{f}_i^{(2)}$.
 - Third new coordinate is $\vec{f}_i^{(3)}$.

Example

```
W = np.array([
    [1, 0.1, 0.2],
    [0.1, 1, 0.7],
    [0.2, 0.7, 1]
D = np.diag(W.sum(axis=1))
L = D - W
vals. vecs = np.linalg.eigh(L)
# take two eigenvectors
# to map to R^2
f = vecs[:.1:3]
```

Example





Laplacian Eigenmaps

- This approach is part of the method of "Laplacian eigenmaps"
- Introduced by Mikhail Belkin² and Partha Niyogi
- It is a type of spectral embedding

²Now at HDSI

A Practical Issue

► The Laplacian is often **normalized**:

$$L_{\text{norm}} = D^{-1/2} L D^{-1/2}$$

where $D^{-1/2}$ is the diagonal matrix whose *i*th diagonal entry is $1/\sqrt{d_{ii}}$.

 \triangleright Proceed by finding the eigenvectors of L_{norm} .

In Summary

- We can **embed** a similarity graph's nodes into \mathbb{R}^k using the eigenvectors of the graph Laplacian
- Yet another instance where eigenvectors are solution to optimization problem
- Next time: using this for dimensionality reduction