2SC /90

Machine Zearm‘n?_: Repreawitachons

Lecture 10 @ Part1

Nonlinear Dimensionality Reduction

Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?

PCA?
Does PCA work here?

Try projecting onto one principal component.

No

@ e O SR D O e
Y e

PCA?
PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.

Today

Non-linear dimensionality reduction via
spectral embeddings.

Rethinking Dimensionality

Each pointis an (x, y)
coordinate in two
dimensional space

But the structure is
one-dimensional

Could (roughly) locate

point using one number:

distance from end.

Rethinking Dimensionality

Rethinking Dimensionality

Rethinking Dimensionality

Informally: data expressed with d dimensions,
but its really confined to k-dimensional region

This region is called a manifold
d is the ambient dimension

R is the intrinsic dimension

Example

Ambient dimension: 2

Intrinsic dimension: 1

Example

Ambient dimension: 3

Intrinsic dimension: 2

Ambient dimension:

Intrinsic dimension:

Manifold Learning
Given: data in high dimensions

Recover: the low-dimensional manifold

Types of Manifolds

Manifolds can be linear
E.g., linear subpaces - hyperplanes
Learned by PCA

Can also be non-linear (locally linear)
Example: the spiral data
Learned by Laplacian eigenmaps, among others

Euclidean vs. Geodesic Distances

Euclidean distance: the “straight-line” distance
Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances

Euclidean distance: the “straight-line” distance
Geodesic distance: the distance along the manifold

Euclidean vs. Geodesic Distances

If data is close to a linear manifold, geodesic =
Euclidean

Otherwise, can be very different

Non-Linear Dimensionality
Reduction

Goal: Map points in R? to R*

Such that: if X and y are close in geodesic
distance in RY, they are close in Euclidean
distance in R*

Embeddings

A

2SC /90

Machine Zearm‘n?_: Repreawitachons

Lecture 10 Part 2

Embedding Similarities

Similar Netflix Users

Suppose you are a data scientist at Netflix

You're given an n x n similarity matrix W of users
entry (i,j) tells you how similar user i and user j are
1 means “very similar”, 0 means “not at all”

Goal: visualize to find patterns

Idea
We like scatter plots. Can we make one?
Users are not vectors / points!

They are nodes in a similarity graph

Similarity Graphs

Similarity matrices can be thought of as weighted graphs,
and vice versa.

A B ¢ %
A / 0./ 02 g/

B 0./ / 0.7 \ /
c \ oz o %

Goal

Embed nodes of a similarity graph as points.
Similar nodes should map to nearby points.

o

2”’?

\%/ o

Today

We will design a graph embedding approach:
Spectral embeddings via Laplacian eigenmaps

More Formally

Given:
A similarity graph with n nodes
a number of dimensions, R

Compute: an embedding of the n points into R*
so that similar objects are placed nearby

To Start

Given:
A similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Vectors as Embeddings into R’
Suppose we have n nodes (objects) to embed
Assume they are numbered 1, 2, ..., n

Let f,, f,, ..., f, € R be the embeddings

-

We can pack them all into a vector: f.

Goal: find a good set of embeddings, f

Example

An Optimization Problem
We'll turn it into an optimization problem:

Step 1: Design a cost function quantifying how
good a particular embedding f is

Step 2: Minimize the cost

Example

z 2
Which is the best embedding?
x/% B
N [t =—
% 2 —7 3

Cost Function for Embeddings
Idea: cost is low if similar points are close

Here is one approach:

n

Cost(f) =) > wyf;-f;)

i=1 j=1

where w;; is the weight between i and j.

Interpreting the Cost

If w;; = 0, that pair can be placed very far apart
without increasing cost

If wj =1, the pair should be placed close
together in order to have small cost.

Do you see a problem with the cost function?

n n

Cost(f)= > > wy(f;-f)

i=1 j=1

Hint: what embedding f minimizes it?

Problem
The cost is always minimized by taking f = 0.
This is a “trivial” solution. Not useful.

Fix: require ||f|| =1

Really, any number would work. 1 is convenient.

Do you see another problem with the cost function,
even if we require f to be a unit vector?

Hint: what other choice off'will always make this
zero?

Problem

The cost is always minimized by taking

f (1,1, 1)

This is a “trivial” solution. Again, not useful.

Fix: require f to be orthogonal to (1,1, ..., 1)".
Written: £ L (1,1,..., 1)
Ensures that solution is not close to trivial solution
Might seem strange, but it will work!

The New Optimization Problem

Given: an n x n similarity matrix W

Compute: embedding vector f minimizing

Cost(f) = > > wy(fi-f;)’

i=1 j=1

subjectto ||f|l =1and f L (1,1,...,1)

How?
This looks difficult.
Let’s write it in matrix form.

We'll see that it is actually (hopefully) familiar.

2SC /90

Machine Zearm‘n?_: Repreawitachons

Lecture 10 | Part 3

The Graph Laplacian

The Problem

Compute: embedding vector f minimizing

n

Cost(f) =) > wyf;-f;)
i=1 j=1

subjectto ||f|| =1and f L (1,1,...,1)

Now: write the cost function as a matrix
expression.

The Degree Matrix

Recall: in an unweighted graph, the degree of
node i equals number of neighbors.

Equivalently (where A is the adjacency matrix):

Since Aj=1 only if j is a neighbor of i

.+

"

A17(u3= 414 243
The Degree Matrix

In a weighted graph, define degree of node i
similarly:

n
degree(i) = Z w;;
j=1

That is, it is the total weight of all neighbors.

The Degree Matrix

The degree matrix D of a weighted graph is the
diagonal matrix where entry (i, 1) is given by:

d.; = degree(i)

‘*“og: 7 b _ iWU-
971 0 j=

The Graph Laplacian

DefineL=D-W
D is the degree matrix
W is the similarity matrix (weighted adjacency)

L is called the Graph Laplacian matrix.

It is a very useful object

Very Important Fact

Proof: expand both sides

Proof

2SC /90

Machine Zearm‘n?_: Repreawitachons

Lecture 10 Part 4

Solving the Optimization Problem

A New Formulation
Given: an n x n similarity matrix W
Compute: embedding vector f minimizing
Cost(f) = 2 fTLf
subjectto ||f| =1and f L (1,1,...,1)

This might sound familiar...

Recall: PCA

Given: a d x d covariance matrix C

Find: vector U maximizing the variance in the
direction of u:
g’ ci

subject to ||d]| = 1.

Solution: take i = top eigenvector of C

A New Formulation
Forget about orthogonality constraint for now.
Compute: embedding vector f minimizing

Cost(f) = =f'Lf

N|=

subject to ||f|| =1.

Solution: the bottom eigenvector of L.
That is, eigenvector with smallest eigenvalue.

Claim

The bottom eigenvector is f = \/lﬁ(1, 1.1
It has associated eigenvalue of 0.

That is, Lf = Of =0

Spectral' Theorem

Theorem
If A is a symmetric matrix, eigenvectors of A with
distinct eigenvalues are orthogonal to one another.

T“Spectral” not in the sense of specters (ghosts), but because the

eigenvalues of a transformation form the “spectrum”

The Fix

Remember: we wanted fto be orthogonal to
1 T
ﬁ(“'""” .

i.e., should be orthogonal to bottom eigenvector of L.

Fix: take fto the be eigenvector of L with with
smallest eigenvalue # 0.

Will be L \#(1, 1,..., 1T by the spectral theorem.

A _% Spectral Embeddings: Problem &
v o . ?Q

Given: similarity graph with n nodes

NAP Compute: an embedding of the n points into R’ S&?
ﬁn so that similar objects are placed nearby

0
q\ -
Formally: find embedding vector f minimizing q\Q

m& costfy=3 > wylfi-fiP =5 G
i=1 j=1 §\V

subjectto |f|| =1and f L (1,1,...,1)

Spectral Embeddings: Solution

Form the graph Laplacian matrix, L =D - W

Choose f be an eigenvector of L with smallest
eigenvalue > 0

This is the embedding!

Example

W = np.array([
[1, 0.1, 0.2],

% [0.1, 1, 0.7],
g / [0.2, 0.7, 1]

D

D = np.diag(W.sum(axis=1))
\ L D - W
% vals, vecs = np.linalg.eigh(L)

f = vecs[:,1]

Example

Embedding into R*
This embeds nodes into R'.
What about embedding into R*?

Natural extension: find bottom k eigenvectors
with eigenvalues > 0

New Coordinates

With k eigenvectors f, f@, .., f®) each node is
mapped to a point in R, Jo g

Consider node . .
First new coordinate is f; .

. . 2
Second new coordinate is f,().
. . . 3
Third new coordinate is f,().

Example

" (0 % O O
= np.array
[1, 0.1, 0.2], 0 ‘-27 0

[0.2, 1, 0.7],

[0.2, 0.7, 1] () C) l-01

1)
D = np.diag(W.sum(axis=1))
L=D-W

vals, vecs = np.linalg.eigh(L)

take two eigenvectors
to map to R"2
f = vecs[:,1:3]

Example

Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin? and Partha Niyogi

It is a type of spectral embedding

ZNow at HDSI

A Practical Issue

The Laplacian is often normalized:

Lo = D7V2LD7V2

norm

where D712 is the diagonal matrix whose ith
diagonal entry is 1/\/d—”.

Proceed by finding the eigenvectors of L.

In Summary

We can embed a similarity graph’s nodes into R*
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction

