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Nonlinear Dimensionality Reduction
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Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?
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PCA?
Does PCA work here?

Try projecting onto one principal component.
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No
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PCA?

PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.
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Today

Non-linear dimensionality reduction via
spectral embeddings.
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Rethinking Dimensionality

Each point is an (x,y)
cqordin.ate in two
dimensional space

But the structure is
one-dimensional

Could (roughly) locate

point using one number:

distance from end.

7/65



Rethinking Dimensionality
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Rethinking Dimensionality
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Rethinking Dimensionality

Informally: data expressed with d dimensions,
but its really confined to k-dimensional region

This region is called a manifold
d is the ambient dimension

R is the intrinsic dimension
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Example
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Example

Ambient dimension: 3

Intrinsic dimension: 2
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Ambient dimension:

Intrinsic dimension:
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Manifold Learning

Given: data in high dimensions

Recover: the low-dimensional manifold
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Types of Manifolds

Manifolds can be linear
E.g., linear subpaces - hyperplanes
Learned by PCA

Can also be non-linear (locally linear)
Example: the spiral data
Learned by Laplacian eigenmaps, among others
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Euclidean vs. Geodesic Distances

Euclidean distance: the “straight-line” distance
Geodesic distance: the distance along the manifold
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Euclidean vs. Geodesic Distances

Euclidean distance: the “straight-line” distance
Geodesic distance: the distance along the manifold
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Euclidean vs. Geodesic Distances

If data is close to a linear manifold, geodesic =
Euclidean

Otherwise, can be very different
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Non-Linear Dimensionality
Reduction

Goal: Map points in R? to RF

Such that: if X and y are close in geodesic
distance in R, they are close in Euclidean
distance in R¥
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Embeddings
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Similar Netflix Users
Suppose you are a data scientist at Netflix

You're given an n x n similarity matrix W of users
entry (i,j) tells you how similar user i and user j are
1 means “very similar”, 0 means “not at all”

Goal: visualize to find patterns
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Idea
We like scatter plots. Can we make one?
Users are not vectors / points!

They are nodes in a similarity graph
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Similarity Graphs

Similarity matrices can be thought of as weighted graphs,
and vice versa.
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Goal

Embed nodes of a similarity graph as points.
Similar nodes should map to nearby points.
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Today

We will design a graph embedding approach:
Spectral embeddings via Laplacian eigenmaps
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More Formally

Given:
A similarity graph with n nodes
a number of dimensions, R

Compute: an embedding of the n points into R*
so that similar objects are placed nearby
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To Start

Given:
A similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby
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Vectors as Embeddings into R’
Suppose we have n nodes (objects) to embed
Assume they are numbered 1, 2, ..., n

Let f., f,,..., f, € R be the embeddings

We can pack them all into a vector: f

Goal: find a good set of embeddings, f
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Example

f=01,3,2,-4)

29/65



An Optimization Problem

We'll turn it into an optimization problem:

Step 1: Design a cost function quantifying how
good a particular embedding f is

Step 2: Minimize the cost
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Example

Which is the best embedding?
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Cost Function for Embeddings
Idea: cost is low if similar points are close

Here is one approach:

where w;; is the weight between i and j.
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Interpreting the Cost

If w; = 0, that pair can be placed very far apart
without increasing cost

If wy =1, the pair should be placed close
together in order to have small cost.
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Do you see a problem with the cost function?

n

Cost(f) = > > wy(f,- £

i=1 j=1

Hint: what embedding f minimizes it?
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Problem
The cost is always minimized by taking f = 0.
This is a “trivial” solution. Not useful.
Fix: require ||f|| =1

Really, any number would work. 1 is convenient.

35/65



Do you see another problem with the cost function,
even if we require f to be a unit vector?

Hint: what other choice of f will always make this
zero?
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Problem

The cost is always minimized by taking

-

f = (1,1, 1)

This is a “trivial” solution. Again, not useful.

Fix: require f to be orthogonal to (1,1, ..., 1)".
Written: f L (1,1,...,1)"
Ensures that solution is not close to trivial solution
Might seem strange, but it will work!
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The New Optimization Problem

Given: an n x n similarity matrix W

Compute: embedding vector f minimizing

Cost(f) = ) > wyf;-f;)

i=1 j=1

subjectto |[fll=1and f L (1,1,...,1)"
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How?
This looks difficult.
Let’s write it in matrix form.

We'll see that it is actually (hopefully) familiar.
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The Problem

Compute: embedding vector f minimizing

Cost ZZWU(f f

i=1 j=1
subjectto ||f|l =1and f L (1,1,...,1)

Now: write the cost function as a matrix
expression.
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The Degree Matrix

Recall: in an unweighted graph, the degree of
node i equals number of neighbors.

Equivalently (where A is the adjacency matrix):

n
degree(i) = ZAU.
j=1

Since A;=1 only if j is a neighbor of i
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The Degree Matrix

In a weighted graph, define degree of node |
similarly:

n
degree(i) = z w;;
j=1
That is, it is the total weight of all neighbors.
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The Degree Matrix

The degree matrix D of a weighted graph is the
diagonal matrix where entry (i, ) is given by:

d.; = degree(i)

n
= Z Wij
j=1
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The Graph Laplacian

DefineL=D-W
D is the degree matrix
W is the similarity matrix (weighted adjacency)

L is called the Graph Laplacian matrix.

It is a very useful object
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Very Important Fact

Claim:

Cost(f) =y > wylf;- Fi) = of L

i=1 j=1

Proof: expand both sides
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Proof
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A New Formulation
Given: an n x n similarity matrix W
Compute: embedding vector f minimizing
cost(fy = 371§
subjectto [If]l =1and f L (1,1,...,1)"

This might sound familiar...
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Recall: PCA

Given: a d x d covariance matrix C

Find: vector U maximizing the variance in the
direction of u:
grca

subject to ||U] = 1.
Solution: take i = top eigenvector of C
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A New Formulation
Forget about orthogonality constraint for now.
Compute: embedding vector f minimizing
Cost(f) = 2 fTLf
subject to || f]l = 1.

Solution: the bottom eigenvector of L.
That is, eigenvector with smallest eigenvalue.
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Claim

The bottom eigenvector is f = \/lﬁ(1, 1,17

It has associated eigenvalue of 0.

> o

That is, Lf = 0f = 0
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Spectral' Theorem

Theorem
If A is a symmetric matrix, eigenvectors of A with
distinct eigenvalues are orthogonal to one another.

T“Spectral” not in the sense of specters (ghosts), but because the

eigenvalues of a transformation form the “spectrum”
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The Fix

Remember: we wanted fto be orthogonal to

a1 T
(1,1, )T

i.e., should be orthogonal to bottom eigenvector of L.

Fix: take f to the be eigenvector of L with with
smallest eigenvalue # 0.

Will be L ,1,..., DT by the spectral theorem.

1
ol
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Spectral Embeddings: Problem

Given: similarity graph with n nodes

Compute: an embedding of the n points into R’
so that similar objects are placed nearby

Formally: find embedding vector f minimizing

Cost(f) = ) > wylf;-f;y = of"Lf

_1
i=1 j=1 2

subjectto |Ifll =1and f L (1,1,...,1)"
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Spectral Embeddings: Solution

Form the graph Laplacian matrix, L =D - W

Choose f be an eigenvector of L with smallest
eigenvalue > 0

This is the embedding!
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Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.71,
[0.2, 0.7, 1]

1)
D = np.diag(W.sum(axis=1))
L=D-W

vals, vecs = np.linalg.eigh(L)

f = vecs[:,1]
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Example
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Embedding into R¥
This embeds nodes into R'.
What about embedding into R*?

Natural extension: find bottom k eigenvectors
with eigenvalues > 0
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New Coordinates

With k eigenvectors fM, f@ . f® each node is
mapped to a point in R*.

Consider node I. .
First new coordinate is f; "

Second new coordinate is f,-(z).
Third new coordinate is f,-(3).
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Example

W = np.array([
[1, 0.1, 0.2],
[0.1, 1, 0.7],

‘;Fr [0.2, 0.7, 1]
g/ D)

np.diag(wW.sum(axis=1))

D - W
\ % vals, vecs = np.linalg.eigh(L)

# take two eigenvectors
# to map to R"2
f = vecs[:,1:3]

)

—
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Example
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Laplacian Eigenmaps

This approach is part of the method of
“Laplacian eigenmaps”

Introduced by Mikhail Belkin? and Partha Niyogi

It is a type of spectral embedding

2Now at HDSI
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A Practical Issue

The Laplacian is often normalized:

Lo = D7'2LD7V2

norm

where D™1/2 is the diagonal matrix whose ith
diagonal entry is 1/\/d—”.

Proceed by finding the eigenvectors of L

norm*
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In Summary

We can embed a similarity graph’s nodes into R¥
using the eigenvectors of the graph Laplacian

Yet another instance where eigenvectors are
solution to optimization problem

Next time: using this for dimensionality
reduction
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