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Nonlinear Dimensionality Reduction



Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?



PCA?
Does PCA work here?

Try projecting onto one principal component.
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PCA?
PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.



Today

Non-linear dimensionality reduction via
spectral embeddings.



£60 el TZow(k-H)
Last Time: Spectral Embeddings F 7

Given: a similarity graph with n nodes, number
of dimensions k.

Embed: each node as a point in R* such that
similar nodes are mapped to nearby points

Solution: bottom k non-constant eigenvectors of
graph Laplacian



Idea

Build a similarity graph
from points.

Points near the spiral
should be similar.

Embed the similarity
graph into R’



Today
1) How do we build a graph from a set of points?

2) Dimensionality reduction with Laplacian
eigenmaps
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From Points to Graphs



Dimensionality Reduction

Given: n points in RY, number of dimensions
k<d

Map: each point X to new representation 7 € R¥



Idea
Build a similarity graph from points in R?
Use approach from last lecture to embed into R*

But how do we represent a set of points as a
similarity graph?



Why graphs?
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Three Approaches
1) Epsilon neighbors graph
2) k-Nearest neighbor graph

3) fully connected graph with similarity function



Epsilon Neighbors Graph

Input: vectors XV, ..., X",
a number €

Create a graph with one .
. . _,(’) /~
node i per point X .

Add edge between nodes i
and j if |[XD - X0 < e

Result: unweighted graph



What will the graph look like when € is small? What
about when it is large?




Epsilon Neighbors Graph



Epsilon Neighbors Graph




Epsilon Neighbors Graph




lon Neighbors Graph

Epsi




Note

We've drawn these graphs by placing nodes at
the same position as the point they represent

But a graph’s nodes can be drawn in any way



Epsilon Neighbors: Pseudocode

# assume the data is in X
n = len(X)
adj = np. zerosé—ﬂﬁ) ((V\ Y\))
for i in range n)
for j in range(n)
if distance(X[il, X[j]) <= epsilon:
adj[i, 3] = 1



Picking ¢
If € is too small, graph is underconnected
If € is too large, graph is overconnected

If you cannot visualize, just try and see



With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.radius_neighbors_graph(
X,
radius=...



k-Neighbors Wx/.
) //\‘

Input: vectors XV, ..., X",
a number R

Create a graph with one
node i per point )

Add edge between each
node i and its k closest
neighbors

Result: unweighted graph



k-Neighbors: Pseudocode

# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in k_closest_neighbors(X, i):
adjli, jl = 1



Is it possible for a k-neighbors graph to be dis-
conected?




k-Neighbors Graph



k-Neighbors Graph




k-Neighbors Graph




k-Neighbors Graph




With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.kneighbors_graph(
X,
n_neighbors=...



Fully Connected Graph

Input: vectors X, ..., X",
a similarity function h

Create a graph with one
node i per point X

Add edge between every
pair of nodes. Assign

weight of h(X?, X0))

Result: weighted graph



Gaussian Similarity
A common similarity function: Gaussian

Must choose o appropriately

h(%,y) = e 1%-71*10°

SN



Fully Connected: Pseudocode

def h(x, y):
dist = np.linalg.norm(x, y)
return np.exp(-dist#*2 / sigma*x2)

# assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):
for j in range(n):
wli, j1 = h(X[il, X[j1)



With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances*#*2 / sigmax*2)



Gaussian Similarity
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Gaussian Similarity
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Laplacian Eigenmaps



Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Now: use approach from last lecture to embed
into R¥
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Example 1



Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.
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Example 1: Spectral Embedding

Let W be the weight matrix (R-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding



Example 1: Spiral

Embedding into R’
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Example 1: Spiral

Embedding into R?



Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(
W, n_components=2
)



Example 2: Face Pose
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Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps



Example 2: Face Pose




Example 2: Face Pose
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Spectral Clustering



Spectral Embeddings

Useful in multiple tasks:
Feature learning before classification
Visualizing high dimensional data
Clustering



Spectral Clustering

Problem: k-means assumptions:
Data are vectors (what about graphs?)
Clusters are spherical (what about more complex
patterns?)

One idea:
Embed using, e.g., Laplacian eigenmaps
Run k-means on the embedded points



Demo



