
Lecture 11 | Part 1

Nonlinear Dimensionality Reduction

1 / 47

Scenario
▶ You want to train a
classifier on this data.

▶ It would be easier if we
could “unroll” the spiral.

▶ Data seems to be
one-dimensional, even
though in two dimensions.

▶ Dimensionality reduction?

2 / 47

PCA?
▶ Does PCA work here?

▶ Try projecting onto one principal component.

3 / 47

No

4 / 47

PCA?
▶ PCA simply “rotates” the data.

▶ No amount of rotation will “unroll” the spiral.

▶ We need a fundamentally different approach
that works for non-linear patterns.

5 / 47

Today
▶ Non-linear dimensionality reduction via
spectral embeddings.

6 / 47

Last Time: Spectral Embeddings
▶ Given: a similarity graph with 𝑛 nodes, number
of dimensions 𝑘.

▶ Embed: each node as a point in ℝ𝑘 such that
similar nodes are mapped to nearby points

▶ Solution: bottom 𝑘 non-constant eigenvectors of
graph Laplacian

7 / 47

Idea

▶ Build a similarity graph
from points.

▶ Points near the spiral
should be similar.

▶ Embed the similarity
graph into ℝ1

8 / 47

Today
▶ 1) How do we build a graph from a set of points?

▶ 2) Dimensionality reduction with Laplacian
eigenmaps

9 / 47

Lecture 11 | Part 2

From Points to Graphs

10 / 47

Dimensionality Reduction

▶ Given: 𝑛 points in ℝ𝑑 , number of dimensions
𝑘 ≤ 𝑑

▶ Map: each point ⃗𝑥 to new representation ⃗𝑧 ∈ ℝ𝑘

11 / 47

Idea
▶ Build a similarity graph from points in ℝ2

▶ Use approach from last lecture to embed into ℝ𝑘

▶ But how do we represent a set of points as a
similarity graph?

12 / 47

Why graphs?

13 / 47

Three Approaches
▶ 1) Epsilon neighbors graph

▶ 2) 𝑘-Nearest neighbor graph

▶ 3) fully connected graph with similarity function

14 / 47

Epsilon Neighbors Graph
▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝜀

▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)

▶ Add edge between nodes 𝑖
and 𝑗 if ‖ ⃗𝑥(𝑖) − ⃗𝑥(𝑗)‖ ≤ 𝜀

▶ Result: unweighted graph

15 / 47

Exercise
What will the graph look like when 𝜀 is small? What
about when it is large?

16 / 47

Epsilon Neighbors Graph

17 / 47

Epsilon Neighbors Graph

17 / 47

Epsilon Neighbors Graph

17 / 47

Epsilon Neighbors Graph

17 / 47

Note
▶ We’ve drawn these graphs by placing nodes at
the same position as the point they represent

▶ But a graph’s nodes can be drawn in any way

18 / 47

Epsilon Neighbors: Pseudocode
assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):

for j in range(n):
if distance(X[i], X[j]) <= epsilon:

adj[i, j] = 1

19 / 47

Picking 𝜀
▶ If 𝜀 is too small, graph is underconnected

▶ If 𝜀 is too large, graph is overconnected

▶ If you cannot visualize, just try and see

20 / 47

With scikit-learn
import sklearn.neighbors
adj = sklearn.neighbors.radius_neighbors_graph(

X,
radius=...

)

21 / 47

k-Neighbors Graph
▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a number 𝑘

▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)

▶ Add edge between each
node 𝑖 and its 𝑘 closest
neighbors

▶ Result: unweighted graph

22 / 47

k-Neighbors: Pseudocode
assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):

for j in k_closest_neighbors(X, i):
adj[i, j] = 1

23 / 47

Exercise
Is it possible for a 𝑘-neighbors graph to be dis-
conected?

24 / 47

k-Neighbors Graph

25 / 47

k-Neighbors Graph

25 / 47

k-Neighbors Graph

25 / 47

k-Neighbors Graph

25 / 47

With scikit-learn
import sklearn.neighbors
adj = sklearn.neighbors.kneighbors_graph(

X,
n_neighbors=...

)

26 / 47

Fully Connected Graph
▶ Input: vectors ⃗𝑥(1), … , ⃗𝑥(𝑛),
a similarity function ℎ

▶ Create a graph with one
node 𝑖 per point ⃗𝑥(𝑖)

▶ Add edge between every
pair of nodes. Assign
weight of ℎ(⃗𝑥(𝑖), ⃗𝑥(𝑗))

▶ Result: weighted graph

27 / 47

Gaussian Similarity
▶ A common similarity function: Gaussian

▶ Must choose 𝜎 appropriately

ℎ(⃗𝑥, ⃗𝑦) = 𝑒−‖ ⃗𝑥− ⃗𝑦‖2/𝜎2

28 / 47

Fully Connected: Pseudocode
def h(x, y):

dist = np.linalg.norm(x, y)
return np.exp(-dist**2 / sigma**2)

assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):

for j in range(n):
w[i, j] = h(X[i], X[j])

29 / 47

With SciPy
distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigma**2)

30 / 47

Gaussian Similarity

31 / 47

Gaussian Similarity

31 / 47

Gaussian Similarity

31 / 47

Gaussian Similarity

31 / 47

Lecture 11 | Part 3

Laplacian Eigenmaps

32 / 47

Idea
▶ Build a similarity graph from points in ℝ2

▶ epsilon neighbors, 𝑘-neighbors, or fully connected

▶ Now: use approach from last lecture to embed
into ℝ𝑘

33 / 47

Example 1: Spiral

34 / 47

Example 1: Spiral
▶ Build a 𝑘-neighbors graph.
▶ Note: follows the 1-d shape of the data.

35 / 47

Example 1: Spectral Embedding
▶ Let 𝑊 be the weight matrix (𝑘-neighbor
adjacency matrix)

▶ Compute 𝐿 = 𝐷 − 𝑊

▶ Compute bottom 𝑘 non-constant eigenvectors of
𝐿, use as embedding

36 / 47

Example 1: Spiral
▶ Embedding into ℝ1

37 / 47

Example 1: Spiral

▶ Embedding into ℝ2

38 / 47

Example 1: Spiral
import sklearn.neighbors
import sklearn.manifold
W = sklearn.neighbors.kneighbors_graph(

X, n_neighbors=4
)
embedding = sklearn.manifold.spectral_embedding(

W, n_components=2
)

39 / 47

Example 2: Face Pose

40 / 47

Example 2: Face Pose
▶ Construct fully-connected similarity graph with
Gaussian similarity

▶ Embed with Laplacian eigenmaps

41 / 47

Example 2: Face Pose

0.10 0.05 0.00 0.05 0.10

0.15

0.10

0.05

0.00

0.05

0.10

0.15

42 / 47

Example 2: Face Pose

0.10 0.05 0.00 0.05 0.10

0.15

0.10

0.05

0.00

0.05

0.10

43 / 47

Lecture 11 | Part 4

Spectral Clustering

44 / 47

Spectral Embeddings
▶ Useful in multiple tasks:

▶ Feature learning before classification
▶ Visualizing high dimensional data
▶ Clustering

45 / 47

Spectral Clustering
▶ Problem: k-means assumptions:

▶ Data are vectors (what about graphs?)
▶ Clusters are spherical (what about more complex
patterns?)

▶ One idea:
1. Embed using, e.g., Laplacian eigenmaps
2. Run k-means on the embedded points

46 / 47

Demo

47 / 47

