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Nonlinear Dimensionality Reduction
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Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?

2/ 47



PCA?
Does PCA work here?

Try projecting onto one principal component.
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No
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PCA?

PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.
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Today

Non-linear dimensionality reduction via
spectral embeddings.
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Last Time: Spectral Embeddings

Given: a similarity graph with n nodes, number
of dimensions k.

Embed: each node as a point in R* such that
similar nodes are mapped to nearby points

Solution: bottom k non-constant eigenvectors of
graph Laplacian
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Idea

Build a similarity graph
from points.

Points near the spiral
should be similar.

Embed the similarity
graph into R’
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Today
1) How do we build a graph from a set of points?

2) Dimensionality reduction with Laplacian
eigenmaps
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Dimensionality Reduction

Given: n points in RY, number of dimensions
kRs<d

Map: each point X to new representation 7 € R*
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Idea
Build a similarity graph from points in R?
Use approach from last lecture to embed into R®
But how do we represent a set of points as a

similarity graph?
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Why graphs?
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Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function
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Epsilon Neighbors Graph

Input: vectors XV, ..., X",
a number ¢

Create a graph with one
node i per point X’

Add edge between nodes i
and j if [XD - X9 < ¢

Result: unweighted graph
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What will the graph look like when € is small? What
about when it is large?
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Epsilon Neighbors Graph



Epsilon Neighbors Graph
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Epsilon Neighbors Graph
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Epsilon Neighbors Graph
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Note

We've drawn these graphs by placing nodes at
the same position as the point they represent

But a graph’s nodes can be drawn in any way
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Epsilon Neighbors: Pseudocode

# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in range(n):
if distance(X[il, X[j]) <= epsilon:
adj[i, j] = 1
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Picking ¢
If € is too small, graph is underconnected
If € is too large, graph is overconnected

If you cannot visualize, just try and see
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With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.radius_neighbors_graph(
X,
radius=...
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k-Neighbors Graph

Input: vectors XV, ..., X",
a number R

Create a graph with one
node i per point X

Add edge between each
node i and its k closest
neighbors

Result: unweighted graph
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k-Neighbors: Pseudocode

# assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in k_closest_neighbors(X, i):
adjli, jl = 1
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Is it possible for a k-neighbors graph to be dis-
conected?
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k-Neighbors Graph
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k-Neighbors Graph
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k-Neighbors Graph
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k-Neighbors Graph

25/ 47



With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.kneighbors_graph(
X,
n_neighbors=...
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Fully Connected Graph

Input: vectors X, ..., X",
a similarity function h

Create a graph with one
node i per point X’

Add edge between every
pair of nodes. Assign

weight of h(X?, X0))

Result: weighted graph
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Gaussian Similarity
A common similarity function: Gaussian

Must choose g appropriately

h(%,7) = e I%-71%/0°
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Fully Connected: Pseudocode

def h(x, vy):
dist = np.linalg.norm(x, vy)
return np.exp(-dist++2 / sigma*+*2)

# assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):
for j in range(n):
wli, j] = h(X[i]l, X[j1)
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With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigmaxx2)
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Gaussian Similarity
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Gaussian Similarity
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Gaussian Similarity
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Gaussian Similarity
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Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Now: use approach from last lecture to embed
into R¥
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Spiral
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Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.
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Example 1: Spectral Embedding

Let W be the weight matrix (R-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding
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Example 1: Spiral

Embedding into R’

37/ 47



Example 1: Spiral

Embedding into R?
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Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(
W, n_components=2
)
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Example 2: Face Pose
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Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps
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Example 2: Face Pose
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Example 2: Face Pose
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Spectral Embeddings

Useful in multiple tasks:
Feature learning before classification
Visualizing high dimensional data
Clustering
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Spectral Clustering

Problem: k-means assumptions:
Data are vectors (what about graphs?)

Clusters are spherical (what about more complex
patterns?)

One idea:

Embed using, e.g., Laplacian eigenmaps
Run k-means on the embedded points
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Demo
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