2SC /190

Nachine Zearm‘w?_ : Repreaaviterhong

Lecture 11 Part1

Nonlinear Dimensionality Reduction

1/47

Scenario

You want to train a
classifier on this data.

It would be easier if we
could “unroll” the spiral.

Data seems to be
one-dimensional, even

though in two dimensions.

Dimensionality reduction?

2/ 47

PCA?
Does PCA work here?

Try projecting onto one principal component.

o™ LAY
K ...
. -
.c. ‘c: ..o
o BT gteene, e Se
" Y, e
F T Mo
AP St
[) A
s & s T %
;s \ &S &
*e L g
H \\ “«. PG
Y e :\ 00 ’_.' Ry
ot e o
S R
:
o e s
-, ..°0..u"' o
. L4
(R o....

3/47

No

4] 47

PCA?

PCA simply “rotates” the data.

No amount of rotation will “unroll” the spiral.

We need a fundamentally different approach
that works for non-linear patterns.

5/ 47

Today

Non-linear dimensionality reduction via
spectral embeddings.

6/47

Last Time: Spectral Embeddings

Given: a similarity graph with n nodes, number
of dimensions k.

Embed: each node as a point in R* such that
similar nodes are mapped to nearby points

Solution: bottom k non-constant eigenvectors of
graph Laplacian

7/ 47

Idea

Build a similarity graph
from points.

Points near the spiral
should be similar.

Embed the similarity
graph into R’

8/ 47

Today
1) How do we build a graph from a set of points?

2) Dimensionality reduction with Laplacian
eigenmaps

9/47

2SC /190

Nachine Zearm‘n?_ : Repreaaviterhong

Lecture 11 Part 2

From Points to Graphs

10/ 47

Dimensionality Reduction

Given: n points in RY, number of dimensions
kRs<d

Map: each point X to new representation 7 € R*

1/ 47

Idea
Build a similarity graph from points in R?
Use approach from last lecture to embed into R®
But how do we represent a set of points as a

similarity graph?

12/ 47

Why graphs?

d
2 ..»
' J
. 5 2/
L (2
N\
'y e) 4
//,/ g
° oo,
° L]
o o o, . ooo
°® ., o
ooo loo‘-c ooo o
°® d ®e °
° & * 0
ooo' S\oo -ooo olo f.
ooo R4 o 'l n-oo
Ll
9,
..\ i K;
$ % &
5, ‘e »* P
3 &4 s
s 3 0 W8
e T e \? .
[. » .
° ’ot. ‘ °®
% ,0 L °®
(] () °e® @
°e °Pgee” oo
... ...
L]

13/ 47

Three Approaches
1) Epsilon neighbors graph
2) R-Nearest neighbor graph

3) fully connected graph with similarity function

14 [47

Epsilon Neighbors Graph

Input: vectors XV, ..., X",
a number ¢

Create a graph with one
node i per point X’

Add edge between nodes i
and j if [XD - X9 < ¢

Result: unweighted graph

15/ 47

What will the graph look like when € is small? What
about when it is large?

16/ 47

Epsilon Neighbors Graph

Epsilon Neighbors Graph

17/ 47

Epsilon Neighbors Graph

17/ 47

Epsilon Neighbors Graph

17/ 47

Note

We've drawn these graphs by placing nodes at
the same position as the point they represent

But a graph’s nodes can be drawn in any way

18/ 47

Epsilon Neighbors: Pseudocode

assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in range(n):
if distance(X[il, X[j]) <= epsilon:
adj[i, j] = 1

19/ 47

Picking ¢
If € is too small, graph is underconnected
If € is too large, graph is overconnected

If you cannot visualize, just try and see

20/ 47

With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.radius_neighbors_graph(
X,
radius=...

21/ 47

k-Neighbors Graph

Input: vectors XV, ..., X",
a number R

Create a graph with one
node i per point X

Add edge between each
node i and its k closest
neighbors

Result: unweighted graph

22/ 47

k-Neighbors: Pseudocode

assume the data is in X
n = len(X)
adj = np.zeros_like(X)
for i in range(n):
for j in k_closest_neighbors(X, i):
adjli, jl = 1

23/ 47

Is it possible for a k-neighbors graph to be dis-
conected?

24 [47

k-Neighbors Graph

R 4
e
.

v
1%
.
-

N

25/ 47

k-Neighbors Graph

25/ 47

k-Neighbors Graph

25/ 47

k-Neighbors Graph

25/ 47

With scikit-learn

import sklearn.neighbors

adj = sklearn.neighbors.kneighbors_graph(
X,
n_neighbors=...

26/ 47

Fully Connected Graph

Input: vectors X, ..., X",
a similarity function h

Create a graph with one
node i per point X’

Add edge between every
pair of nodes. Assign

weight of h(X?, X0))

Result: weighted graph

27 47

Gaussian Similarity
A common similarity function: Gaussian

Must choose g appropriately

h(%,7) = e I%-71%/0°

28/ 47

Fully Connected: Pseudocode

def h(x, vy):
dist = np.linalg.norm(x, vy)
return np.exp(-dist++2 / sigma*+*2)

assume the data is in X
n = len(X)
w = np.ones_like(X)
for i in range(n):
for j in range(n):
wli, j] = h(X[i]l, X[j1)

29 /47

With SciPy

distances = scipy.spatial.distance_matrix(X, X)
w = np.exp(-distances**2 / sigmaxx2)

30/ 47

Gaussian Similarity

31/ 47

Gaussian Similarity

31/ 47

Gaussian Similarity

31/47

Gaussian Similarity

31/47

2SC /190

Nachine Zearm‘n?_ : Repreaaviterhong

Lecture 11 Part 3

Laplacian Eigenmaps

32/ 47

Idea

Build a similarity graph from points in R?
epsilon neighbors, k-neighbors, or fully connected

Now: use approach from last lecture to embed
into R¥

33 /47

Spiral

o
.
[}
(]
U]
.
[4
-
e

Example 1
.d""

34 /47

Example 1: Spiral

Build a k-neighbors graph.
Note: follows the 1-d shape of the data.

35/ 47

Example 1: Spectral Embedding

Let W be the weight matrix (R-neighbor
adjacency matrix)

ComputeL=D-W

Compute bottom k non-constant eigenvectors of
L, use as embedding

36/ 47

Example 1: Spiral

Embedding into R’

37/ 47

Example 1: Spiral

Embedding into R?

38/ 47

Example 1: Spiral

import sklearn.neighbors

import sklearn.manifold

W = sklearn.neighbors.kneighbors_graph(
X, n_neighbors=4

)

embedding = sklearn.manifold.spectral_embedding(
W, n_components=2
)

39 /47

Example 2: Face Pose

B A e Ee o
Cab® oy e M pa
_d T LT
P s BB s €0
R B B B P
B G B s bl B
K G B o B B
pa TAFIEA LS
] AT lad T
P B B g € B

Example 2: Face Pose

Construct fully-connected similarity graph with
Gaussian similarity

Embed with Laplacian eigenmaps

41/ 47

Example 2: Face Pose

42 [47

Example 2: Face Pose

1A o ;-\ 2
I ; F :-J =Y
= ,f?‘? = Dy 2

"i* i ’*’g
ud ‘hsin g
ST - T E

43 [47

2SC /190

Nachine Zearm‘n?_ : Repreaaviterhong

Lecture 11 Part 4

Spectral Clustering

44 | 47

Spectral Embeddings

Useful in multiple tasks:
Feature learning before classification
Visualizing high dimensional data
Clustering

45 [47

Spectral Clustering

Problem: k-means assumptions:
Data are vectors (what about graphs?)

Clusters are spherical (what about more complex
patterns?)

One idea:

Embed using, e.g., Laplacian eigenmaps
Run k-means on the embedded points

46 [47

Demo

47 [47

