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Lecture 12  Part1

Neural Networks



Recall: Linear Predictor

Input: features X = (X, ..., X,)"

Parameters:
> T
W= (Wy, W,, ..., W,)

Output: w, + w, X, + ...+ W X,




Linear Predictors

Pro: simple, usually easy to optimize w
With square loss, solution given by normal equations

Con: Decision boundary is linear






Recall: Basis Functions

Input: features X, basis
functions ¢.,...,p, : R > R

Parameters:
> T
W= (Wy, W,, ..., W,)

2V

Output: ) A
W, + W, @, (X) + ... + w,@,(X)




Basis Functions

Note: the basis functions and the weights w are
not chosen at the same time

Two step process

First, basis functions are chosen and fixed
By hand, by k-means clustering, etc.

Then the weights w are learned



Why do this in two steps as opposed to one?




Answer

By fixing basis functions then finding best w,
optimization is easy again

Using square loss, normal equations still work



Idea

Try to learn basis functions at same time as
weights, w

Attempt #1: linear basis functions?

(pi()?) =W, X, + .+ WX,



The Model

Q.(X)=W_.x, +...+ WX,



Neural Network

Input: features X,

Parameters:
W= (wy, w,, ..., w,),
(d +1)xd’ matrix W

Output: A
W, + W, @, (X) + ... + W, @,(X)

This is a neural network



If @, is linear, so is the
decision boundary!
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Problem

h= F(%(?o)
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Activation Function
40(?7

To make @, nonlinear, we

often apply a activation
function.

Very commonly: rectified
linear unit (ReLU)

g(z) = max{0, z} 2

(pi()?) g(Wy, + W, X, + Wy X Ao+ W x M)

max{0, Wy, + W, x, + W,.x, + ... + WdiXd"}



£ = %% 2x?
Neural Networks as Functions

A neural network is simply a special kind of
function.

f(X; v, W)
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A Solution

0 -1 0
1T 1 w=|1
1T 1 -2

W =




Prediction Surface




Learning with NNs

We can learn weights by gathering data, picking
a loss function and minimizing loss.

The square loss works:



Problem

Now that the basis function weights are
learnable, too, there is no simple solution for the
best weights.

We must instead use gradient descent.
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Gradient Descent



P+ )(?" zxz+ 5

Gradient Descent

We have a function f : R - R
We can't solve for the x that minimizes (or maximizes) f(x)

Instead, we use the derivative to “walk” towards the optimizer



Meaning of the Derivative

We have the derivative; can we use it?

%(x) is a function; it gives the slope at x.

N
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Key Idea Behind Gradient Descent

If the slope of f at x is positive then moving to the left
decreases the value of f.

i.e., we should decrease x

N
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Key Idea Behind Gradient Descent

If the slope of f at x is negative then moving to the right
decreases the value of f.

i.e., we should increase x

N
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Key Idea Behind Gradient Descent

Pick a starting place, x,. Where do we go next?
Slope at x,, negative? Then increase x,.
Slope at x,, positive? Then decrease x,.

This will work:



Gradient Descent

Pick a to be a positive number. It is the learning rate.

Pick a starting prediction, x,.

df

On step i, perform update x; = x,_, - a - H(XH)

Repeat until convergence (when x doesn’t change much).




def gradient_descent(derivative, x, alpha, tol=1e-12):

"""Minimize using gradient descent.”””
while True:

x_next = x - alpha * derivative(x)

if abs(x_next - x) < tol:

break

X = X_next

return h



"
Example: Minimizing Mean Squared Error  dR W):-Z Z:( \D
n
v

Recall the mean squared error and its derivative:

=2
RE dR,, -q( [Men] +
W=g2lenr =Eeen U
_ G
-0
Let Vi = -4, Y, = -2, Yy = 2, Y, = 4, )L“ ‘)
Pick x, = 4 and a = 1/4. What is x,2?
R \
a) -1 2,5 K, - D< ‘( Xo) (8+6+2

N)—P

b) 0 -
1 "’\"Lg

B 4.7 -2 y




Example



Gradient Descent in > 1 dimensions

The derivative of f becomes the gradient:

df .
ax Vf(X)

Meaning of differentiable: locally, f looks linear.

Key: Vf(W) is a function; it returns a vector pointing in direction
of steepest ascent.



Gradient Descent in > 1 dimensions

Pick a to be a positive number.
It is the learning rate.

Pick a starting guess, w(©.
On step i, update W = Wt-" - a - VF(H1-1)

Repeat until convergence
when W doesn’t change much

equivalently, when [|[VF(#")]| is small



def gradient_descent(gradient, w, alpha, tol=1e-12):

"""Minimize using gradient descent.”””
while True:

w_next = w - alpha * gradient(x)

if np.linalg.norm(w_next - w) < tol:

break

w = w_next

return w
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Convexity in 1-d



Question

When is gradient descent guaranteed to work?



Not here...




Convex Functions

Convex Non-convex



Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Other Terms
If a function is not convey, it is non-convex.
Strictly convex: the line lies strictly above curve.

Concave: the line lines on or below curve.



Convexity: Formal Definition

A function f : R - R is convex if for every choice
ofa,be Randte|[0,1]:

(1-t)f(a) + tf(b) 2 f((1 - t)a + tb).




Example

Is f(x) = | x| convex?



Another View: Second Derivatives

d>f

If ==(x) = 0 for all x, then f is convex.

dx2

Example: f(x) = x* is convex.

Warning! Only works if f is twice differentiable!
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Another View: Second Derivatives

“Best” straight line at x,:
h1(z) = fl(xo) -z+b

“Best” parabola at x:
At x,, f looks likes h,(2) = 2f"(x,) - 2%+ f'(x,)z + ¢
Possibilities: upward-facing, downward-facing.



Convexity and Parabolas

Convex if for every x,, parabola is upward-facing.
Thatis, f"(x,) 2 0.

/|




Convexity and Gradient Descent

Convex functions are (relatively) easy to optimize.

Theorem: if R(x) is convex and differentiable
then gradient descent converges to a global
optimum of R provided that the step size is small

enough’.

'and its derivative is not too wild
2actually, a modified GD works on non-differentiable functions
3step size related to steepness.



Nonconvexity and Gradient Descent

Nonconvex functions are (relatively) hard to
optimize.

Gradient descent can still be useful.

But not guaranteed to converge to a global
minimum.
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Convexity in Many Dimensions



Convexity: Definition

f(X) is convex if for every @, b the line segment
between

(@ f@) and (b, f(b))
does not go below the plot of f.




Convexity: Formal Definition

A function f : R? - R is convex if for every choice
ofd,be RYand t e[0,1]:

(1 - t)f(d) + tf(b) = f((1 - t)d + tb).



The Second Derivative Test

For 1-d functions, convex if second derivative = 0.

For 2-d functions, convex if ???



The Hessian Matrix

Create the Hessian matrix of second derivatives:



In General

If f : R - R, the Hessian at X is:

Py L) - L
ox; (X 0X, X, (X) 0X, Xy (X)
R afZ N afZ af2 >
H(X) = | ox,x, (X) ox ( ) axzxd(x)
d 2 d 2 N 9 2 >
L (%) or (x) I (%



The Second Derivative Test

A function f : RY - R is convex if for any X € RY,
the Hessian matrix H(X) is positive semi-definite.

That is, all eigenvalues are 2 0



Next Time

Backpropagation and gradient descent for training
neural networks.



