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Convexity in 1-d



Neural Networks

A NN is just a function: 𝑓( ⃗𝑥; �⃗�)



Example
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Learning▶ Given: a data set ( ⃗𝑥(𝑖), 𝑦𝑖)▶ Find: weights �⃗� minimizing some cost function
(e.g., expected square loss):𝐶(�⃗�) = 1𝑛 𝑛∑𝑖=1 (𝑓( ⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2▶ Problem: there is no closed-form solution



Gradient Descent▶ Idea: start at arbitrary �⃗�(0), walk in direction of
gradient:

∇𝐶 = ⎛⎜⎜⎜⎜⎝
𝜕𝐶𝜕𝑤0𝜕𝐶𝜕𝑤1⋮𝜕𝐶𝜕𝑤𝑘
⎞⎟⎟⎟⎟⎠



Question
When is gradient descent guaranteed to work?



Not here...

•→

•8-•→•
•

w



Convex Functions

Convex Non-convex
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Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .
0



Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .°
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Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .:



Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .
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Other Terms▶ If a function is not convex, it is non-convex.▶ Strictly convex: the line lies strictly above curve.▶ Concave: the line lines on or below curve.

un



Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every choice
of 𝑎, 𝑏 ∈ ℝ and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏).
t



Example
Is 𝑓(𝑥) = |𝑥| convex? yes ¥
strictly? no

1×-41 + I × - 71 + ✗
2

Claim: The sum of
convex fins is

convex .



Example
Is 𝑓(𝑥) = |𝑥| convex?Mr~

*



Another View: Second Derivatives▶ If 𝑑2𝑓𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥, then 𝑓 is convex.▶ Example: 𝑓(𝑥) = 𝑥4 is convex.▶ Warning! Only works if 𝑓 is twice differentiable!¥, = 4×3%4--2=12×2
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Another View: Second Derivatives▶ “Best” straight line at 𝑥0:▶ ℎ1(𝑧) = 𝑓′(𝑥0) ⋅ 𝑧 + 𝑏▶ “Best” parabola at 𝑥0:▶ At 𝑥0, 𝑓 looks likes ℎ2(𝑧) = 12𝑓″(𝑥0) ⋅ 𝑧2 + 𝑓′(𝑥0)𝑧 + 𝑐▶ Possibilities: upward-facing, downward-facing.
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Convexity and Parabolas▶ Convex if for every 𝑥0, parabola is upward-facing.▶ That is, 𝑓″(𝑥0) ≥ 0.
•
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Convexity and Gradient Descent▶ Convex functions are (relatively) easy to optimize.▶ Theorem: if 𝑅(𝑥) is convex and differentiable12
then gradient descent converges to a global
optimum of 𝑅 provided that the step size is small
enough3.

1and its derivative is not too wild
2actually, a modified GD works on non-differentiable functions
3step size related to steepness.

¥



Nonconvexity and Gradient Descent▶ Nonconvex functions are (relatively) hard to
optimize.▶ Gradient descent can still be useful.▶ But not guaranteed to converge to a global
minimum.
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Convexity in Many Dimensions



Convexity: Definition▶ 𝑓( ⃗𝑥) is convex if for every �⃗�, �⃗� the line segment
between (�⃗�, 𝑓(�⃗�)) and (�⃗�, 𝑓(�⃗�))
does not go below the plot of 𝑓 .
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Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for every choice
of �⃗�, �⃗� ∈ ℝ𝑑 and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(�⃗�) + 𝑡𝑓(�⃗�) ≥ 𝑓((1 − 𝑡)�⃗� + 𝑡�⃗�).



The Second Derivative Test▶ For 1-d functions, convex if second derivative ≥ 0.▶ For 2-d functions, convex if ???



The Hessian Matrix▶ Create the Hessian matrix of second derivatives:

𝐻( ⃗𝑥) = ( 𝜕𝑓2𝜕𝑥21 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 ( ⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥22 ( ⃗𝑥) )
f- IX. , -1-7



In General▶ If 𝑓 ∶ ℝ𝑑 → ℝ, the Hessian at ⃗𝑥 is:
𝐻( ⃗𝑥) = ⎛⎜⎜⎝

𝜕𝑓2𝜕𝑥21 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥1𝑥𝑑 ( ⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥22 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑥𝑑 ( ⃗𝑥)⋯ ⋯ ⋯ ⋯𝜕𝑓2𝜕𝑥𝑑𝑥1 ( ⃗𝑥) 𝜕𝑓2𝜕𝑥2𝑑 ( ⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑑 ( ⃗𝑥)
⎞⎟⎟⎠



The Second Derivative Test▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for any ⃗𝑥 ∈ ℝ𝑑 ,
the Hessian matrix 𝐻( ⃗𝑥) is positive semi-definite.▶ That is, all eigenvalues are ≥ 0
An
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Basic Backpropagation



Learning▶ Given: a data set ( ⃗𝑥(𝑖), 𝑦𝑖)▶ Find: weights �⃗� minimizing some cost function
(e.g., expected square loss):𝐶(�⃗�) = 1𝑛 𝑛∑𝑖=1 (𝑓( ⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2▶ Problem: there is no closed-form solution



Gradient Descent▶ Idea: start at arbitrary �⃗�(0), walk in direction of
gradient:

∇𝐶 = ⎛⎜⎜⎜⎝
𝜕𝐶𝜕𝑤0𝜕𝐶𝜕𝑤1⋮𝜕𝐶𝜕𝑤𝑘
⎞⎟⎟⎟⎠



Computing the Gradient▶ To train a neural network, we can use gradient
descent.▶ Involves computing the gradient of the cost
function.▶ Backpropagation is one method for efficiently
computing the gradient.



The Gradient

∇�⃗�𝐶(�⃗�) = ∇�⃗� 1𝑛 𝑛∑𝑖=1 (𝑓( ⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 ∇�⃗� (𝑓( ⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 2 (𝑓( ⃗𝑥(𝑖); �⃗�) − 𝑦𝑖) ∇�⃗�𝑓( ⃗𝑥(𝑖); �⃗�)

(f-(E) tgcx)]Hair
= 2fc⇒ᵈ£x =ᵈ¥+ᵈ*



Interpreting the Gradient

∇�⃗�𝐶(�⃗�) = 1𝑛 𝑛∑𝑖=1 2 (𝑓( ⃗𝑥(𝑖); �⃗�) − 𝑦𝑖) ∇�⃗�𝑓( ⃗𝑥(𝑖); �⃗�)▶ The gradient has one term for each training example,( ⃗𝑥(𝑖), 𝑦𝑖)▶ If prediction for ⃗𝑥(𝑖) is good, contribution to gradient is
small.▶ ∇�⃗�𝑓( ⃗𝑥(𝑖); �⃗�) captures how sensitive 𝑓( ⃗𝑥(𝑖)) is to value of eachparameter.



The Chain Rule▶ Recall the chain rule from calculus.▶ Let 𝑓, 𝑔 ∶ ℝ → ℝ▶ Then: 𝑑𝑑𝑥𝑓(𝑔(𝑥)) = 𝑓′(𝑔(𝑥)) ⋅ 𝑔(𝑥)▶ Alternative notation: 𝑑𝑑𝑥𝑓(𝑔(𝑥)) = 𝑑𝑓𝑑𝑔 𝑑𝑔𝑑𝑥 (𝑥)
I



Example▶ 𝑓(𝑥) = 𝑥2; 𝑔(𝑥) = 2𝑥 + 1 h(x) = flgcxs)
what is ᵈ¥ ?

¥ -
- ¥gᵈ¥

adgflg)=dGg2
= 2g dat -_ [2×+1]=2

ᵈᵗdgᵈd¥= 2g(x) - 2
= 4g (×> = 8×+4



Example▶ 𝑓(𝑥) = 𝑥2; 𝑔(𝑥) = 2𝑥 + 1
HAD = flgcx)) = (2×+1)

2 = 4×2+4×+1

hlx> = [4×2+4×+1]
= 8×+4



The Chain Rule for NNs



Computation Graphs



Example



General Formulas▶ Derivatives are defined
recursively▶ Easy to compute
derivatives for early layers
if we have derivatives for
later layers.▶ This is backpropagation.

𝜕𝑓𝜕𝑤(ℓ) = 𝜕𝑓𝜕𝑎(ℓ) ⋅ 𝜕𝑎(ℓ)𝜕𝑧(ℓ) ⋅ 𝜕𝑧(ℓ)𝜕𝑤(ℓ)𝜕𝑓𝜕𝑎(ℓ) = 𝜕𝑓𝜕𝑎(ℓ+1) ⋅ 𝜕𝑎(ℓ+1)𝜕𝑧(ℓ+1) ⋅ 𝜕𝑧(ℓ+1)𝜕𝑎(ℓ)



Warning▶ The derivatives depend on the network
architecture▶ Number of hidden nodes / layers▶ Backprop is done automatically by your NN library



Backpropagation

Compute the derivatives for the last layers first; use them to
compute derivatives for earlier layers.
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A More Complex Example



Complexity▶ The strategy doesn’t change much when each
layer has more nodes.



Computational Graph



Example



General Formulas𝜕𝑓𝜕𝑤(ℓ)𝑖𝑗 = 𝜕𝑓𝜕𝑎(ℓ) ⋅ 𝜕𝑎(ℓ)𝜕𝑧(ℓ) ⋅ 𝜕𝑧(ℓ)𝜕𝑤(ℓ)𝑖𝑗𝜕𝑓𝜕𝑎(ℓ) = 𝜕𝑓𝜕𝑎(ℓ+1) ⋅ 𝜕𝑎(ℓ+1)𝜕𝑧(ℓ+1) ⋅ 𝜕𝑧(ℓ+1)𝜕𝑎(ℓ)
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Intuition Behind Backprop



Intuition


