DSC 190 Machine Learning: Representations

Lecture 13 | Part 1

Convexity in 1-d

Neural Networks

A NN is just a function: $f(\vec{x}; \vec{w})$

Example

Learning

- **Given**: a data set $(\vec{x}^{(i)}, y_i)$
- Find: weights w minimizing some cost function (e.g., expected square loss):

$$C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2$$

Problem: there is no closed-form solution

Gradient Descent

• Idea: start at arbitrary $\vec{w}^{(0)}$, walk in direction of gradient:

$$\nabla C = \begin{pmatrix} \frac{\partial C}{\partial w_0} \\ \frac{\partial C}{\partial w_1} \\ \vdots \\ \frac{\partial C}{\partial w_k} \end{pmatrix}$$

Question

When is gradient descent guaranteed to work?

Convex Functions

f is convex if for every a, b the line segment between

(*a*, *f*(*a*)) and (*b*, *f*(*b*))

does not go below the plot of f.

f is convex if for every a, b the line segment between

f is convex if for every a, b the line segment between

(*a*, *f*(*a*)) and (*b*, *f*(*b*))

does not go below the plot of f.

f is convex if for every a, b the line segment between

(a, f(a)) and (b, f(b))does not go below the plot of f.

Other Terms

▶ If a function is not convex, it is **non-convex**.

- Strictly convex: the line lies strictly above curve.
- **Concave:** the line lines on or below curve.

Convexity: Formal Definition

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

Another View: Second Derivatives

Warning! Only works if f is twice differentiable!

- "Best" parabola at x_0 :
 - At x_0 , f looks likes $h_2(z) = \frac{1}{2}f''(x_0) \cdot z^2 + f'(x_0)z + c$
 - Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

Convex if for every x₀, parabola is upward-facing.
 That is, f"(x₀) ≥ 0.

Convexity and Gradient Descent

Convex functions are (relatively) easy to optimize.

Theorem: if R(x) is convex and differentiable¹² then gradient descent converges to a global optimum of R provided that the step size is small enough³.

¹and its derivative is not too wild

²actually, a modified GD works on non-differentiable functions

³step size related to steepness.

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

DSC 190 Machine Learning: Representations

Lecture 13 | Part 2

Convexity in Many Dimensions

• $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between

(*ā*, f(*ā*)) and (*b*, f(*b*))

does not go below the plot of f.

Convexity: Formal Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a})+tf(\vec{b})\geq f((1-t)\vec{a}+t\vec{b}).$$

The Second Derivative Test

For 1-d functions, convex if second derivative \geq 0.

► For 2-d functions, convex if ???

Create the Hessian matrix of second derivatives:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1}(\vec{x}) & \frac{\partial f^2}{\partial x_2^2}(\vec{x}) \end{pmatrix}$$

In General

▶ If $f : \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:

▶ A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, the Hessian matrix $H(\vec{x})$ is **positive semi-definite**.

► That is, all eigenvalues are ≥ 0

DSC 190 Machine Learning: Representations

Lecture 13 | Part 3

Basic Backpropagation

Learning

- **Given**: a data set $(\vec{x}^{(i)}, y_i)$
- Find: weights w minimizing some cost function (e.g., expected square loss):

$$C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2$$

Problem: there is no closed-form solution

Gradient Descent

• Idea: start at arbitrary $\vec{w}^{(0)}$, walk in direction of gradient:

$$\nabla C = \begin{pmatrix} \frac{\partial C}{\partial w_0} \\ \frac{\partial C}{\partial w_1} \\ \vdots \\ \frac{\partial C}{\partial w_k} \end{pmatrix}$$

Computing the Gradient

- To train a neural network, we can use gradient descent.
- Involves computing the gradient of the cost function.
- Backpropagation is one method for efficiently computing the gradient.

$$\frac{d}{dx} [f(x)]^{2} \quad \text{The Gradient} \quad \frac{d}{dx} [f(\hat{x}) + g(\hat{x})] \\
= 2f(\hat{x}) \frac{df}{dx} \\
\nabla_{\vec{w}} C(\vec{w}) = \nabla_{\vec{w}} \frac{1}{n} \sum_{i=1}^{n} (f(\vec{x}^{(i)}; \vec{w}) - y_{i})^{2} \quad = \frac{df}{dx} + \frac{dg}{dx} \\
= \frac{1}{n} \sum_{i=1}^{n} \nabla_{\vec{w}} (f(\vec{x}^{(i)}; \vec{w}) - y_{i})^{2} \\
= \frac{1}{n} \sum_{i=1}^{n} 2 (f(\vec{x}^{(i)}; \vec{w}) - y_{i}) \nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$$

Interpreting the Gradient

$$\nabla_{\vec{w}} C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} 2(f(\vec{x}^{(i)}; \vec{w}) - y_i) \nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$$

- The gradient has one term for each training example, $(\vec{x}^{(i)}, y_i)$
- If prediction for x⁽ⁱ⁾ is good, contribution to gradient is small.
- ► $\nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$ captures how sensitive $f(\vec{x}^{(i)})$ is to value of each parameter.

The Chain Rule

Recall the chain rule from calculus.

• Let
$$f, g : \mathbb{R} \to \mathbb{R}$$

► Then:

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

• Alternative notation:
$$\frac{d}{dx}f(g(x)) = \frac{df}{dg}\frac{dg}{dx}(x)$$

Example
$$h(x) = f(g(x))$$

 $f(x) = x^{2}; g(x) = 2x + 1$ What is $\frac{dh}{dx}$?
 $\frac{df}{dx} = \frac{df}{dg} \frac{dg}{dx}$
 $\frac{d}{dy} = \frac{dg}{dx} \frac{g^{2}}{dx} = 2g \frac{dg}{dx} = \frac{d}{dx} [2x+i] = Z$
 $\frac{df}{dg} \frac{dg}{dx} = 2g(x) \cdot 2 = 4g(x) = 8x + 4$

Example

►
$$f(x) = x^{2}; g(x) = 2x + 1$$

 $n(x) = f(g(x)) = (2x+1)^{2} = 4x^{2} + 4x + 1$
 $\frac{d}{dx} h(x) = \frac{d}{dx} [4x^{2} + 4x + 1]$
 $= 8x + 4$

The Chain Rule for NNs

Computation Graphs

Example

General Formulas

- Derivatives are defined recursively
- Easy to compute derivatives for early layers if we have derivatives for later layers.

∂f	∂f	$\partial a^{(l)}$	дz	(የ)
∂w ^(≀)	$\frac{\partial a^{(\ell)}}{\partial a^{(\ell)}}$	$\partial Z^{(\ell)}$	Эw	(१)
∂f	∂f	∂a ^{({}	+1)	$\partial z^{(\ell+1)}$
$\overline{\partial a^{(\ell)}}$	$-\frac{\partial a^{(\ell+1)}}{\partial a^{(\ell+1)}}$	$\partial z^{(\ell+1)}$	·1) •	$\partial a^{(\ell)}$

► This is **backpropagation**.

Warning

- The derivatives depend on the network architecture
 - Number of hidden nodes / layers
- Backprop is done automatically by your NN library

Backpropagation

Compute the derivatives for the last layers first; use them to compute derivatives for earlier layers.

DSC 190 Machine Learning: Representations

Lecture 13 | Part 4

A More Complex Example

Complexity

The strategy doesn't change much when each layer has more nodes.

Computational Graph

Example

General Formulas

$$\frac{\partial f}{\partial w_{ij}^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot \frac{\partial a^{(\ell)}}{\partial z^{(\ell)}} \cdot \frac{\partial z^{(\ell)}}{\partial w_{ij}^{(\ell)}}$$
$$\frac{\partial f}{\partial a^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell+1)}} \cdot \frac{\partial a^{(\ell+1)}}{\partial z^{(\ell+1)}} \cdot \frac{\partial z^{(\ell+1)}}{\partial a^{(\ell)}}$$

DSC 190 Machine Learning: Representations

Lecture 13 | Part 5

Intuition Behind Backprop

Intuition

