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Convexity in 1-d



Neural Networks

A NN is just a function: f(X; W)
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Learning
Given: a data set (X, )

Find: weights w minimizing some cost function
(e.g., expected square loss):

Problem: there is no closed-form solution



Gradient Descent
Idea: start at arbitrary W, walk in direction of
gradient:
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Question

When is gradient descent guaranteed to work?



Not here...




Convex Functions

Convex Non-convex



Convexity: Definition

f is convex if f line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition

f is convex if for every a, b the line segment
between

(@ f(a) and  (b,f(b)

doeg e plot of f.




Convexity: Definition

f is convex if fhe line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.
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Convexity: Definition

f is convex if for every a, b the line segment
between

(a,f(a)) and (b, f(b))
does not go below the plot of f.

/\r\wm/
’ T




Other Terms
If a function is not convey, it is non-convex.
Strictly convex: the line lies strictly above curve.

Concave: the line lines on or below curve.
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Convexity: Formal Definition

A function f : R - R is convex if for every choice
ofa,be Randte|[0,1]:

(1-t)f(a) + tf(b) 2 f((1 - t)a + tb).
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Example

Is f(x) = | x| convex? lg-w \1/
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Another View: Second Derivatives

If %(x) > 0 for all x, then f is convex.
dE gy A1 a4 . 2

v Example: f(x) = x* is convex. pl\(’ A,{
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Warning! Only works if f is twice differentiable!
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Another View: Second Derivatives

“Best” straight line at x,:
h1(z) = fl(xo) -z+b

“Best” parabola at x:
At x,, f looks likes h,(2) = 2f"(x,) - 2%+ f'(x,)z + ¢
Possibilities: upward-facing, downward-facing.



Convexity and Parabolas

Convex if for every x,, parabola is upward-facing.
Thatis, f"(x,) 2 0.
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Convexity and Gradient Descent '\ /
Convex functions are (relatively) easy to optimize.
Theorem: if R(x) is convex and differentiable \/
then gradient descent converges to a global

optimum of R provided that the step size is small
enough’.

'and its derivative is not too wild
2actually, a modified GD works on non-differentiable functions
3step size related to steepness.



Nonconvexity and Gradient Descent

Nonconvex functions are (relatively) hard to
optimize.

Gradient descent can still be useful.

But not guaranteed to converge to a global
minimum.
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Convexity in Many Dimensions



Convexity: Definition

f(X) is convex if for every @, b the line segment
between

(@ f@) and (b, f(b))
does not go below the plot of f.




Convexity: Formal Definition

A function f : R? - R is convex if for every choice
ofd,be RYand t e[0,1]:

(1 - t)f(d) + tf(b) = f((1 - t)d + tb).



The Second Derivative Test

For 1-d functions, convex if second derivative = 0.

For 2-d functions, convex if ???
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The Hessian Matrix

Create the Hessian matrix of second derivatives:

(%)

ax1 0X, X,

2z 2L(%)

0X, X, 0X3

H(X) =



In General

If f : R - R, the Hessian at X is:

Py L) - L
ox; (X 0X, X, (X) 0X, Xy (X)
R afZ N afZ af2 >
H(X) = | ox,x, (X) ox ( ) axzxd(x)
d 2 d 2 N 9 2 >
L (%) or (x) I (%
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The Second Derivative Test

A function f : RY - R is convex if for any X € RY,
the Hessian matrix H(X) is positive semi-definite.

That is, all eigenvalues are 2 0
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Basic Backpropagation



Learning
Given: a data set (X, y.)

Find: weights w minimizing some cost function
(e.g., expected square loss):

Problem: there is no closed-form solution



Gradient Descent

Idea: start at arbitrary w®, walk in direction of
gradient:
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Computing the Gradient

To train a neural network, we can use gradient
descent.

Involves computing the gradient of the cost
function.

Backpropagation is one method for efficiently
computing the gradient.



LS 2(f(% ) - y,) U, F R0, )

i=1



Interpreting the Gradient

i2 - y;) V. F(XD; )

i=1

3|—\

The gradient has one term for each training example,
(X9, y,)

If prediction for X% is good, contribution to gradient is
small.

V.. f(XD; W) captures how sensitive f(X") is to value of each
parameter.



The Chain Rule

Recall the chain rule from calculus.
Letf,g: R—> R

Then: 4
af(g(X)) = f(9(x)) - g(x)

' ion: 4 _ dfdg
Alternative notation: dxf(g(x))- a9 dx(x)
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Example

FX) = % g(x) = 2+ 1
nGd) = ‘9(?(“’) = (2)*
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a(n)

The Chain Rule for NNs
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Computation Graphs
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General Formulas

Derivatives are defined
recursively

of  Of oa® oz

Easy to compute ow® ~ 3a® 9z® ' ow®
derivatives for early layers

if we have derivatives for . .
later layers. of  of _ oat®? _ ozt

aa®  3a®n 9z 3q®

This is backpropagation.



Warning

The derivatives depend on the network
architecture
Number of hidden nodes / layers

Backprop is done automatically by your NN library



Backpropagation

Compute the derivatives for the last layers first; use them to
compute derivatives for earlier layers.

a(n) 1"’7 ;(::
VJU w“” w® 2= YW U-» 3 O
‘ @ aWw - g-(qu))
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A More Complex Example



Complexity

The strategy doesn’t change much when each
layer has more nodes.
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Computational Graph

%
we ®
w‘(” \Lb(l) .
w2 \ ’
a®—— 2""//
ws \\\ o
(v)= S
—_— z wy
Wiz
ok

w
2z

Zz
W

vy
‘ % wg)

V— =0

x X N
2 R
N 3 R




Example



General Formulas

[P of  of oa® oz®
b= av— =0 , F = P . F . {;
a® 2"’/< T~ g aWI(]) aa( ) aZ( ) aWI(])
\\w}" o7 2y /);:
wy? w\\ ( af _ af . aa(l’+1) . az({’+1)

wWoug v 0a® ~ aa®) 9z 3aq®
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Intuition Behind Backprop



Intuition
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