
Lecture 13 | Part 1

Convexity in 1-d

Neural Networks

A NN is just a function: 𝑓(⃗𝑥; �⃗�)

Example

I :(
× , ,
✗a)ᵗ

Learning▶ Given: a data set (⃗𝑥(𝑖), 𝑦𝑖)▶ Find: weights �⃗� minimizing some cost function
(e.g., expected square loss):𝐶(�⃗�) = 1𝑛 𝑛∑𝑖=1 (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2▶ Problem: there is no closed-form solution

Gradient Descent▶ Idea: start at arbitrary �⃗�(0), walk in direction of
gradient:

∇𝐶 = ⎛⎜⎜⎜⎜⎝
𝜕𝐶𝜕𝑤0𝜕𝐶𝜕𝑤1⋮𝜕𝐶𝜕𝑤𝑘
⎞⎟⎟⎟⎟⎠

Question
When is gradient descent guaranteed to work?

Not here...

•→

•8-•→•
•

w

Convex Functions

Convex Non-convex

÷
→
•

Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .
0

Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .°

.

.

Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .:

Convexity: Definition▶ 𝑓 is convex if for every 𝑎, 𝑏 the line segment
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏))
does not go below the plot of 𝑓 .

can

Other Terms▶ If a function is not convex, it is non-convex.▶ Strictly convex: the line lies strictly above curve.▶ Concave: the line lines on or below curve.

un

Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ → ℝ is convex if for every choice
of 𝑎, 𝑏 ∈ ℝ and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏) ≥ 𝑓((1 − 𝑡)𝑎 + 𝑡𝑏).
t

Example
Is 𝑓(𝑥) = |𝑥| convex? yes ¥
strictly? no

1×-41 + I × - 71 + ✗
2

Claim: The sum of
convex fins is

convex .

Example
Is 𝑓(𝑥) = |𝑥| convex?Mr~

*

Another View: Second Derivatives▶ If 𝑑2𝑓𝑑𝑥2 (𝑥) ≥ 0 for all 𝑥, then 𝑓 is convex.▶ Example: 𝑓(𝑥) = 𝑥4 is convex.▶ Warning! Only works if 𝑓 is twice differentiable!¥, = 4×3%4--2=12×2

V

Another View: Second Derivatives▶ “Best” straight line at 𝑥0:▶ ℎ1(𝑧) = 𝑓′(𝑥0) ⋅ 𝑧 + 𝑏▶ “Best” parabola at 𝑥0:▶ At 𝑥0, 𝑓 looks likes ℎ2(𝑧) = 12𝑓″(𝑥0) ⋅ 𝑧2 + 𝑓′(𝑥0)𝑧 + 𝑐▶ Possibilities: upward-facing, downward-facing.

1¥ >°

µ

Convexity and Parabolas▶ Convex if for every 𝑥0, parabola is upward-facing.▶ That is, 𝑓″(𝑥0) ≥ 0.
•

-

C-
•

Convexity and Gradient Descent▶ Convex functions are (relatively) easy to optimize.▶ Theorem: if 𝑅(𝑥) is convex and differentiable12
then gradient descent converges to a global
optimum of 𝑅 provided that the step size is small
enough3.

1and its derivative is not too wild
2actually, a modified GD works on non-differentiable functions
3step size related to steepness.

¥

Nonconvexity and Gradient Descent▶ Nonconvex functions are (relatively) hard to
optimize.▶ Gradient descent can still be useful.▶ But not guaranteed to converge to a global
minimum.

Lecture 13 | Part 2

Convexity in Many Dimensions

Convexity: Definition▶ 𝑓(⃗𝑥) is convex if for every �⃗�, �⃗� the line segment
between (�⃗�, 𝑓(�⃗�)) and (�⃗�, 𝑓(�⃗�))
does not go below the plot of 𝑓 .

•
.
.

-
-
-

Convexity: Formal Definition▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for every choice
of �⃗�, �⃗� ∈ ℝ𝑑 and 𝑡 ∈ [0, 1]:(1 − 𝑡)𝑓(�⃗�) + 𝑡𝑓(�⃗�) ≥ 𝑓((1 − 𝑡)�⃗� + 𝑡�⃗�).

The Second Derivative Test▶ For 1-d functions, convex if second derivative ≥ 0.▶ For 2-d functions, convex if ???

The Hessian Matrix▶ Create the Hessian matrix of second derivatives:

𝐻(⃗𝑥) = (𝜕𝑓2𝜕𝑥21 (⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 (⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 (⃗𝑥) 𝜕𝑓2𝜕𝑥22 (⃗𝑥))
f- IX. , -1-7

In General▶ If 𝑓 ∶ ℝ𝑑 → ℝ, the Hessian at ⃗𝑥 is:
𝐻(⃗𝑥) = ⎛⎜⎜⎝

𝜕𝑓2𝜕𝑥21 (⃗𝑥) 𝜕𝑓2𝜕𝑥1𝑥2 (⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥1𝑥𝑑 (⃗𝑥)𝜕𝑓2𝜕𝑥2𝑥1 (⃗𝑥) 𝜕𝑓2𝜕𝑥22 (⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑥𝑑 (⃗𝑥)⋯ ⋯ ⋯ ⋯𝜕𝑓2𝜕𝑥𝑑𝑥1 (⃗𝑥) 𝜕𝑓2𝜕𝑥2𝑑 (⃗𝑥) ⋯ 𝜕𝑓2𝜕𝑥2𝑑 (⃗𝑥)
⎞⎟⎟⎠

The Second Derivative Test▶ A function 𝑓 ∶ ℝ𝑑 → ℝ is convex if for any ⃗𝑥 ∈ ℝ𝑑 ,
the Hessian matrix 𝐻(⃗𝑥) is positive semi-definite.▶ That is, all eigenvalues are ≥ 0
An

Lecture 13 | Part 3

Basic Backpropagation

Learning▶ Given: a data set (⃗𝑥(𝑖), 𝑦𝑖)▶ Find: weights �⃗� minimizing some cost function
(e.g., expected square loss):𝐶(�⃗�) = 1𝑛 𝑛∑𝑖=1 (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2▶ Problem: there is no closed-form solution

Gradient Descent▶ Idea: start at arbitrary �⃗�(0), walk in direction of
gradient:

∇𝐶 = ⎛⎜⎜⎜⎝
𝜕𝐶𝜕𝑤0𝜕𝐶𝜕𝑤1⋮𝜕𝐶𝜕𝑤𝑘
⎞⎟⎟⎟⎠

Computing the Gradient▶ To train a neural network, we can use gradient
descent.▶ Involves computing the gradient of the cost
function.▶ Backpropagation is one method for efficiently
computing the gradient.

The Gradient

∇�⃗�𝐶(�⃗�) = ∇�⃗� 1𝑛 𝑛∑𝑖=1 (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 ∇�⃗� (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖)2= 1𝑛 𝑛∑𝑖=1 2 (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖) ∇�⃗�𝑓(⃗𝑥(𝑖); �⃗�)

(f-(E) tgcx)]Hair
= 2fc⇒ᵈ£x =ᵈ¥+ᵈ*

Interpreting the Gradient

∇�⃗�𝐶(�⃗�) = 1𝑛 𝑛∑𝑖=1 2 (𝑓(⃗𝑥(𝑖); �⃗�) − 𝑦𝑖) ∇�⃗�𝑓(⃗𝑥(𝑖); �⃗�)▶ The gradient has one term for each training example,(⃗𝑥(𝑖), 𝑦𝑖)▶ If prediction for ⃗𝑥(𝑖) is good, contribution to gradient is
small.▶ ∇�⃗�𝑓(⃗𝑥(𝑖); �⃗�) captures how sensitive 𝑓(⃗𝑥(𝑖)) is to value of eachparameter.

The Chain Rule▶ Recall the chain rule from calculus.▶ Let 𝑓, 𝑔 ∶ ℝ → ℝ▶ Then: 𝑑𝑑𝑥𝑓(𝑔(𝑥)) = 𝑓′(𝑔(𝑥)) ⋅ 𝑔(𝑥)▶ Alternative notation: 𝑑𝑑𝑥𝑓(𝑔(𝑥)) = 𝑑𝑓𝑑𝑔 𝑑𝑔𝑑𝑥 (𝑥)
I

Example▶ 𝑓(𝑥) = 𝑥2; 𝑔(𝑥) = 2𝑥 + 1 h(x) = flgcxs)
what is ᵈ¥ ?

¥ -
- ¥gᵈ¥

adgflg)=dGg2
= 2g dat -_ [2×+1]=2

ᵈᵗdgᵈd¥= 2g(x) - 2
= 4g (×> = 8×+4

Example▶ 𝑓(𝑥) = 𝑥2; 𝑔(𝑥) = 2𝑥 + 1
HAD = flgcx)) = (2×+1)

2 = 4×2+4×+1

hlx> = [4×2+4×+1]
= 8×+4

The Chain Rule for NNs

Computation Graphs

Example

General Formulas▶ Derivatives are defined
recursively▶ Easy to compute
derivatives for early layers
if we have derivatives for
later layers.▶ This is backpropagation.

𝜕𝑓𝜕𝑤(ℓ) = 𝜕𝑓𝜕𝑎(ℓ) ⋅ 𝜕𝑎(ℓ)𝜕𝑧(ℓ) ⋅ 𝜕𝑧(ℓ)𝜕𝑤(ℓ)𝜕𝑓𝜕𝑎(ℓ) = 𝜕𝑓𝜕𝑎(ℓ+1) ⋅ 𝜕𝑎(ℓ+1)𝜕𝑧(ℓ+1) ⋅ 𝜕𝑧(ℓ+1)𝜕𝑎(ℓ)

Warning▶ The derivatives depend on the network
architecture▶ Number of hidden nodes / layers▶ Backprop is done automatically by your NN library

Backpropagation

Compute the derivatives for the last layers first; use them to
compute derivatives for earlier layers.

Lecture 13 | Part 4

A More Complex Example

Complexity▶ The strategy doesn’t change much when each
layer has more nodes.

Computational Graph

Example

General Formulas𝜕𝑓𝜕𝑤(ℓ)𝑖𝑗 = 𝜕𝑓𝜕𝑎(ℓ) ⋅ 𝜕𝑎(ℓ)𝜕𝑧(ℓ) ⋅ 𝜕𝑧(ℓ)𝜕𝑤(ℓ)𝑖𝑗𝜕𝑓𝜕𝑎(ℓ) = 𝜕𝑓𝜕𝑎(ℓ+1) ⋅ 𝜕𝑎(ℓ+1)𝜕𝑧(ℓ+1) ⋅ 𝜕𝑧(ℓ+1)𝜕𝑎(ℓ)

Lecture 13 | Part 5

Intuition Behind Backprop

Intuition

