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Basic Backpropagation



Computing the Gradient

To train a neural network, we can use gradient
descent.

Involves computing the gradient of the cost
function.

Backpropagation is one method for efficiently
computing the gradient.



The Gradient



Interpreting the Gradient

The gradient has one term for each training example,
(X%, y,)

If prediction for X1 is good, contribution to gradient is
small.

V.. f(X9; W) captures how sensitive f(X") is to value of each
parameter.



The Chain Rule
Recall the chain rule from calculus.
Llet f,g : R > R

Then:

d , /
a9 = f(g(x)) - g(x)

. . . d _dfdg
Alternative notation: af(g(x)) = dg dx(x)
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Computation Graphs
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Example
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Example
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General Formulas
of ofF Ja® 4z

Derivatives are defined o = &C; 02® Juw™
recursively
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derivatives for early layers
if we have derivatives for . ®
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Warning

The derivatives depend on the network
architecture
Number of hidden nodes / layers

Backprop is done automatically by your NN
library



Backpropagation

Compute the derivatives for the last layers first; use them to
compute derivatives for earlier layers.
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A More Complex Example



Complexity

The strategy doesn’t change much when each
layer has more nodes.
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Computational Graph
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Example



General Formulas
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Intuition Behind Backprop



Intuition
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Hidden Units
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Neuron

Neuron accepts signals
along synapses.

Synapses have weights.

If weighted sum is “large
enough”, the neuron fires,
or activates.

Cell body

Telodendria .
; 7

Nucleus \ \\/\/%

Synaptic terminals

Axon hllﬂ\

Endoplasmic

.k,
i(}olgi apparatus
Mitochondrion Dendrite

reticulum

/
/ \\g Denditic branches



Neuron

Neuron accepts weighted
inputs.

\
If weighted sum is “large E— @ —_—
enough”, the neuron fires, /

or activates.



Activation Functions

A function g determining whether — and how
strong - a neuron fires.

We have seen two: ReLU and linear.
Many different choices.

Guided by intuition and only a little theory.



Backpropagation

The choice of activation function affects
performance of backpropagation.
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Vanishing Gradients

A major challenge in training deep neural
networks with backpropagation is that of
vanishing gradients.

The gradient for layers far from the output
becomes very small.

Weights can’t be changed. \ /
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Main Idea

Some activation functions promote “healthier”
gradients.




Linear Activations
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Problem

Linear activations result in : n \ \Lb

a linear prediction
function. g /
T
®"



Backprop. with Linear Activations
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Summary: Linear Activations
Good: healthy gradients, fast to compute

Bad: still results in linear prediction function
when layers are combined



Sigmoidal Activations

A basic nonlinearity.

Neuron is either “on” (1), “off” (0), or somewhere
in between.

Very popular before introduction of the RelU.
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Sigmoidal Activations

A sigmoidal unit’s activation
function is:
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Backprop. with Sigmoids
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Problem: Saturation

Large/small inputs lead g(z) to be very close to 1
or -1.

Here, the derivative o'(z) = 0.
Vanishing gradients!

Makes learning deep networks with
gradient-based algorithms very difficult.



RelLU

Linear activations have strong gradients, but
combined are still linear.

Sigmoidal activations are non-linear, but when
saturated lead to weak gradients.

Can we have the best of both?



RelU

A rectified linear unit's
(ReLU) activation function is:

g(z) = max{0, z}




RelU

A rectified linear unit's
(ReLU) activation function is:

g(z) = max{0, z} 1 @
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Backprop. with ReLU
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Backprop. with ReLU

Problem: If inputs < 0, ReLU “deactivates” and
gradients are not passed back.
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Fixing Deactivated ReLUs

One fix: initialize all biases to be small, positive
numbers.

Ensures that most units are active to begin with.

Another fix: modify the RelLU.



Leaky RelLU

A leaky ReLU activation function is:

g(z) = max{az, z} O<ac<1

Usually, a = 0.01. Nonzero derivative.




Summary: RelLU

The popular, “default” choice of activation
function.

Good: Strong gradient when active, fast to
compute.

Bad: No gradient when inactive.
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Output Units



Output Units

As with units in hidden layers, we can customize

output units.
What activation function?
How many units?

Good choice depends on task:
Regression, binary classification, multiclass, etc.

Which loss?



Setting 1: Regression

Output can be any real 1

number. -1 @
Single output neuron. 2\
It makes sense to use a 1
linear activation.
3



Setting 1: Regression
Prediction should not be too high/low.

It makes sense to use the mean squared error.



Setting 1: Regression

Suppose we use linear
activation for output
neuron + mean squared
error.

This is very similar to least
squares regression...

But! Features in earlier
layers are learned,
non-linear.




Setting 2: Binary Classification

Output can be in [0, 1].
Single output neuron.

We could use a linear
activation, threshold.

But there is a better way.



Sigmoids for Classification

Natural choice for activation in output layer for
binary classification: the sigmoid.
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Binary Classification Loss

We could use square loss for binary
classification. There are several reasons not to:

1) Square loss penalizes predictions which are
“too correct”.

2) It doesn’t work well with the sigmoid due to
saturation.



The Cross-Entropy

Instead, we often train deep classifiers using the
cross-entropy as loss.

Let y{) € {0, 1} be true label of ith example.

The average cross-entropy loss:



The Cross-Entropy and the Sigmoid

Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.



Summary: Binary Classification

Use sigmoidal activation the output layer +
cross-entropy loss.

This will promote a strong gradient.

Use whatever activation for the hidden layers
(e.g., RelLU).



