DSC 190 Machine Learning: Representations

Lecture 14 | Part 1

Basic Backpropagation

Computing the Gradient

► To train a neural network, we can use gradient descent.

Involves computing the gradient of the cost function.

Backpropagation is one method for efficiently computing the gradient.

The Gradient

 $= \frac{1}{n} \sum_{i=1}^{n} \nabla_{\vec{w}} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2$

 $= \frac{1}{n} \sum_{i=1}^{n} 2(f(\vec{x}^{(i)}; \vec{w}) - y_i) \nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$

$$\nabla_{\vec{w}} C(\vec{w}) = \nabla_{\vec{w}} \frac{1}{n} \sum_{i=1}^{n} (f(\vec{x}^{(i)}; \vec{w}) - y_i)^2$$

Interpreting the Gradient

$$\nabla_{\vec{w}} C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} 2 \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right) \nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$$

- The gradient has one term for each training example, $(\vec{x}^{(i)}, y_i)$
- If prediction for $\vec{x}^{(i)}$ is good, contribution to gradient is small.
- $\nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$ captures how sensitive $f(\vec{x}^{(i)})$ is to value of each parameter.

The Chain Rule

Recall the chain rule from calculus.

▶ Let
$$f, q : \mathbb{R} \to \mathbb{R}$$

► Then:

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

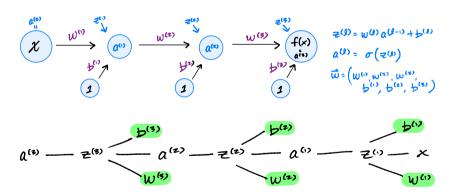
Alternative notation: $\frac{d}{dx}f(g(x)) = \frac{df}{da}\frac{dg}{dx}(x)$

The Chain Rule for NNs
$$f(x) = \sigma(w^{(2)}a^{(2)} + b^{(2)})$$

$$f(x) = \sigma(w^{(3)}a^{(2)} + b^{(3)})$$

$$f(x) = \sigma(w^{(3)}a^{(2)}$$

Computation Graphs



Example

$$\frac{\partial f}{\partial w_{(2)}} = \frac{\partial a_{(2)}}{\partial w_{(2)}} \frac{\partial a_{(2)}}{\partial w_{(2)}} + \frac{\partial a_{(2)}}{\partial w_{(2)}} + \frac{\partial a_{(2)}}{\partial w_{(2)}} + \frac{\partial a_{(2)}}{\partial w_{(2)}} + \frac{\partial a_{(2)}}{\partial w_{(2)}} = \frac{\partial a_{(2)}}{\partial w_{(2)}} \frac{\partial a_{(2)}}{\partial w_{(2)}} + \frac{\partial a_{(2)}}{\partial w_{(2)}} + \frac{\partial a_{(2)}}{\partial w_{(2)}} + \frac{\partial a_{(2)}}{\partial w_{(2)}} = \frac{\partial a_{(2)}}{\partial w_{(2)}} \frac{\partial a_{(2)}}{\partial w_{(2)}} + \frac$$

$$\frac{df}{\partial w^{(s)}} = \frac{\partial a^{(s)}}{\partial w^{(s)}} = \frac{\partial a^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial w^{(s)}}$$

$$O'(z^{(s)}) \quad \alpha^{(s)}$$

Example

$$\frac{\partial a^{(4)}}{\partial w^{(2)}} = \frac{\partial a^{(2)}}{\partial a^{(2)}} \frac{\partial z^{(2)}}{\partial a^{(2)}} \frac{$$

General Formulas

- Derivatives are defined recursively
- Easy to compute derivatives for early layers if we have derivatives for later layers.
- ► This is **backpropagation**.

$$\frac{\partial f}{\partial w^{(3)}} = \frac{\partial f}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial w^{(3)}}$$

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot \frac{\partial a^{(\ell)}}{\partial z^{(\ell)}} \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

$$\frac{\partial f}{\partial a^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell+1)}} \cdot \frac{\partial a^{(\ell+1)}}{\partial z^{(\ell+1)}} \cdot \frac{\partial z^{(\ell+1)}}{\partial a^{(\ell)}}$$

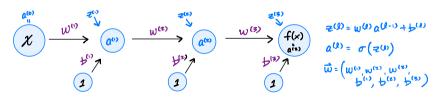
$$a^{(\omega)} - z^{(\alpha)} = a^{(\omega)} - z^{(\omega)} - a^{(\omega)} - z^{(\omega)} - x$$

Warning

- The derivatives depend on the network architecture
 - Number of hidden nodes / layers
- Backprop is done automatically by your NN library

Backpropagation

Compute the derivatives for the last layers first; use them to compute derivatives for earlier layers.



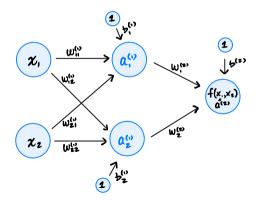
DSC 190 Machine Learning: Representations

Lecture 14 | Part 2

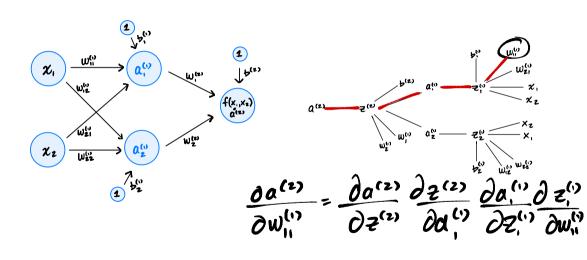
A More Complex Example

Complexity

The strategy doesn't change much when each layer has more nodes.

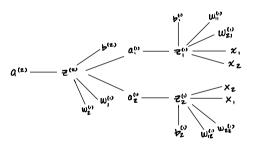


Computational Graph



Example

General Formulas



$$\frac{\partial f}{\partial w_{ij}^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot \frac{\partial a^{(\ell)}}{\partial z^{(\ell)}} \cdot \frac{\partial z^{(\ell)}}{\partial w_{ij}^{(\ell)}}$$

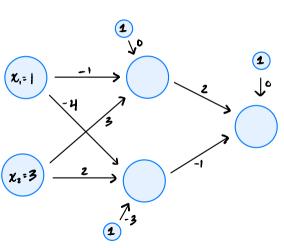
$$\frac{\partial f}{\partial a^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell+1)}} \cdot \frac{\partial a^{(\ell+1)}}{\partial z^{(\ell+1)}} \cdot \frac{\partial z^{(\ell+1)}}{\partial a^{(\ell)}}$$

DSC 190 Machine Learning: Representations

Lecture 14 | Part 3

Intuition Behind Backprop

Intuition

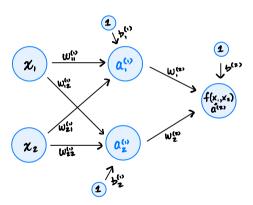


DSC 190 Machine Learning: Representations

Lecture 14 | Part 4

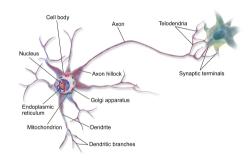
Hidden Units

Hidden Units



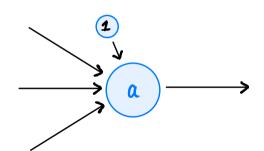
Neuron

- Neuron accepts signals along synapses.
- Synapses have weights.
- If weighted sum is "large enough", the neuron fires, or activates.



Neuron

- Neuron accepts weighted inputs.
- If weighted sum is "large enough", the neuron fires, or activates.



Activation Functions

- ► A function *g* determining whether and how strong a neuron fires.
- We have seen two: ReLU and linear.
- Many different choices.
- Guided by intuition and only a little theory.

Backpropagation

► The choice of activation function affects performance of backpropagation.

Example:

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

Vanishing Gradients

- A major challenge in training deep neural networks with backpropagation is that of vanishing gradients.
 - ► The gradient for layers far from the output becomes very small.
 - Weights can't be changed.

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

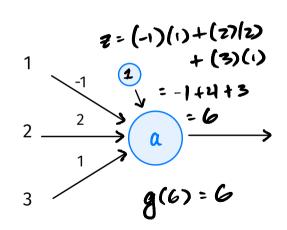
Main Idea

Some activation functions promote "healthier" gradients.

Linear Activations

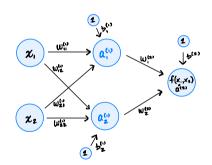
A linear unit's activation function is:

$$g(z) = z$$



Problem

Linear activations result in a linear prediction function.



Backprop. with Linear Activations

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

Summary: Linear Activations

- Good: healthy gradients, fast to compute
- Bad: still results in linear prediction function when layers are combined

Sigmoidal Activations

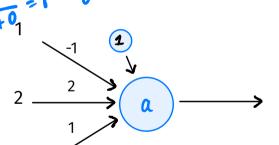
- A basic nonlinearity.
- ► Neuron is either "on" (1), "off" (0), or somewhere in between.

Very popular before introduction of the ReLU.

Sigmoidal Activations

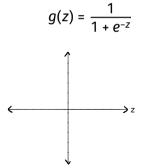
A sigmoidal unit's activation function is:

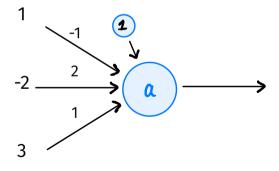
nction is:
$$g(z) = \frac{1}{1 + e^{-z}}$$



Sigmoidal Activations

A sigmoidal unit's activation function is:





Backprop. with Sigmoids

$$g'(z) = g(z)(1 - g(z)) \qquad \frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

Problem: Saturation

Large/small inputs lead g(z) to be very close to 1 or -1.

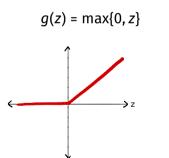
- ► Here, the derivative $\sigma'(z) \approx 0$.
- Vanishing gradients!
- Makes learning deep networks with gradient-based algorithms very difficult.

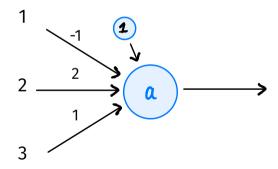
ReLU

- Linear activations have strong gradients, but combined are still linear.
- Sigmoidal activations are non-linear, but when saturated lead to weak gradients.
- Can we have the best of both?

ReLU

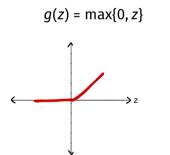
A rectified linear unit's (ReLU) activation function is:

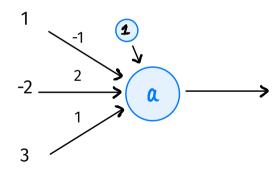




ReLU

A rectified linear unit's (ReLU) activation function is:



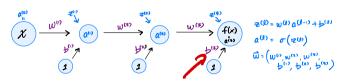


Backprop. with ReLU

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot g'(z^{(\ell)}) \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

Backprop. with ReLU

Problem: If inputs < 0, ReLU "deactivates" and gradients are not passed back.



Fixing Deactivated ReLUs

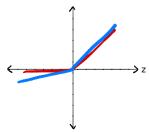
- One fix: initialize all biases to be small, positive numbers.
- Ensures that most units are active to begin with.
- Another fix: modify the ReLU.

Leaky ReLU

► A **leaky ReLU** activation function is:

$$g(z) = \max\{\alpha z, z\}$$
 $0 \le \alpha < 1$

► Usually, $\alpha \approx 0.01$. Nonzero derivative.



Summary: ReLU

The popular, "default" choice of activation function.

- Good: Strong gradient when active, fast to compute.
- Bad: No gradient when inactive.

DSC 190 Machine Learning: Representations

Lecture 14 | Part 5

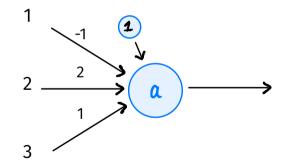
Output Units

Output Units

- As with units in hidden layers, we can customize output units.
 - ▶ What activation function?
 - How many units?
- Good choice depends on task:
 - Regression, binary classification, multiclass, etc.
- Which loss?

Setting 1: Regression

- Output can be any real number.
- Single output neuron.
- It makes sense to use a linear activation.

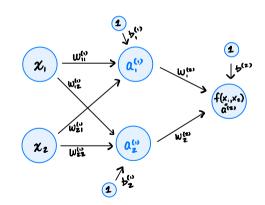


Setting 1: Regression

- Prediction should not be too high/low.
- It makes sense to use the mean squared error.

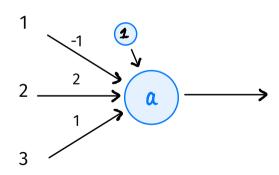
Setting 1: Regression

- Suppose we use linear activation for output neuron + mean squared error.
- This is very similar to least squares regression...
- But! Features in earlier layers are learned, non-linear.



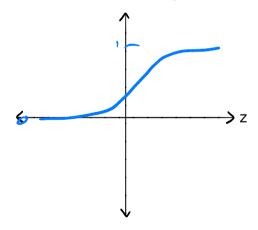
Setting 2: Binary Classification

- Output can be in [0, 1].
- Single output neuron.
- We could use a linear activation, threshold.
- But there is a better way.



Sigmoids for Classification

Natural choice for activation in output layer for binary classification: the **sigmoid**.



Binary Classification Loss

We could use square loss for binary classification. There are several reasons not to:

1) Square loss penalizes predictions which are "too correct".

2) It doesn't work well with the sigmoid due to saturation.

The Cross-Entropy

- Instead, we often train deep classifiers using the cross-entropy as loss.
- Let $y^{(i)} \in \{0, 1\}$ be true label of ith example.
- ► The average cross-entropy loss:

$$-\frac{1}{n} \sum_{i=1}^{n} \left\{ \log f(\vec{x}^{(i)}), & \text{if } y^{(i)} = 1 \\ \log \left[1 - f(\vec{x}^{(i)}) \right], & \text{if } y^{(i)} = 0 \right\}$$

The Cross-Entropy and the Sigmoid

Cross-entropy "undoes" the exponential in the sigmoid, resulting in less saturation.

Summary: Binary Classification

- Use sigmoidal activation the output layer + cross-entropy loss.
- This will promote a strong gradient.
- Use whatever activation for the hidden layers (e.g., ReLU).