2SC /190

Nachine Zearm‘n?_ : Repreaaviterhong

Lecture 14 Part 1

Basic Backpropagation
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Computing the Gradient

To train a neural network, we can use gradient
descent.

Involves computing the gradient of the cost
function.

Backpropagation is one method for efficiently
computing the gradient.
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The Gradient



Interpreting the Gradient

The gradient has one term for each training example,
()-e(l)r y,)

If prediction for X is good, contribution to gradient is
small.

V.. f(X9; W) captures how sensitive f(X") is to value of each
parameter.
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The Chain Rule

Recall the chain rule from calculus.
let f,g: R >R

Then:

d ,
a9 = f(g(x)) - g(x)

. . df d
Alternative notation: < f(g(x)) = d—gd—i(x)
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The Chain Rule for NNs
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Computation Graphs
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General Formulas

Derivatives are defined
recursively

Of  of aa® az®

Easy to compute ow® ~ 3a® . o9z . ow®)
derivatives for early layers

if we have derivatives for R R
later layers. of _ of  da®M _ oz 1)

2a® ~ 3a®) oz gl
This is backpropagation.
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Warning

The derivatives depend on the network
architecture
Number of hidden nodes / layers

Backprop is done automatically by your NN
library
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Backpropagation

Compute the derivatives for the last layers first; use them to
compute derivatives for earlier layers.
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A More Complex Example
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Complexity

The strategy doesn’t change much when each
layer has more nodes.
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Computational Graph
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Example
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General Formulas
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Intuition
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Hidden Units
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Neuron

Neuron accepts signals
along synapses.

Synapses have weights.

If weighted sum is “large
enough”, the neuron fires,
or activates.
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Neuron

Neuron accepts weighted
inputs.

"
If weighted sum is “large E— _—
enough”, the neuron fires, /

or activates.
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Activation Functions

A function g determining whether - and how
strong - a neuron fires.

We have seen two: ReLU and linear.
Many different choices.
Guided by intuition and only a little theory.
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Backpropagation

The choice of activation function affects
performance of backpropagation.

Example:
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Vanishing Gradients

A major challenge in training deep neural
networks with backpropagation is that of
vanishing gradients.

The gradient for layers far from the output
becomes very small.

Weights can’t be changed.
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Main Idea

Some activation functions promote “healthier”
gradients.
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Linear Activations

1
A linear unit's activation ] @
function is: 3/
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9(2) = 2 2—> @ —
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Problem
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Backprop. with Linear Activations
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Summary: Linear Activations
Good: healthy gradients, fast to compute

Bad: still results in linear prediction function
when layers are combined
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Sigmoidal Activations

A basic nonlinearity.

Neuron is either “on” (1), “off” (0), or somewhere
in between.

Very popular before introduction of the RelLU.
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Sigmoidal Activations

A sigmoidal unit’s activation
function is:
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Sigmoidal Activations

A sigmoidal unit’s activation
function is:

9(2) = +1e_z 1 ®
Y
(D)
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Backprop. with Sigmoids
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g'(z) = g(2)(1 - g(2))
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Problem: Saturation

Large/small inputs lead g(z) to be very close to 1
or -1.

Here, the derivative o'(z) = 0.
Vanishing gradients!

Makes learning deep networks with
gradient-based algorithms very difficult.
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RelLU

Linear activations have strong gradients, but
combined are still linear.

Sigmoidal activations are non-linear, but when
saturated lead to weak gradients.

Can we have the best of both?
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RelLU

A rectified linear unit’s
(ReLU) activation function is:

1
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RelLU

A rectified linear unit’s
(ReLU) activation function is:

1
g(z) = max{0, 2} PRNCY
Y
2
30—
z 1
3 /

36/52




Backprop. with ReLU
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Backprop. with ReLU

Problem: If inputs < 0, ReLU “deactivates” and
gradients are not passed back.
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Fixing Deactivated ReLUs

One fix: initialize all biases to be small, positive
numbers.

Ensures that most units are active to begin with.

Another fix: modify the RelLU.
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Leaky RelLU

A leaky ReLU activation function is:

g(z) = max{az, z} 0O<ac<1

Usually, a = 0.01. Nonzero derivative.
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Summary: ReLU

The popular, “default” choice of activation
function.

Good: Strong gradient when active, fast to
compute.

Bad: No gradient when inactive.
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Output Units

As with units in hidden layers, we can customize

output units.
What activation function?
How many units?

Good choice depends on task:
Regression, binary classification, multiclass, etc.

Which loss?
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Setting 1: Regression

Output can be any real
number.

Single output neuron.

It makes sense to use a
linear activation.
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Setting 1: Regression
Prediction should not be too high/low.

It makes sense to use the mean squared error.
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Setting 1: Regression

Suppose we use linear
activation for output
neuron + mean squared
error.

This is very similar to least
squares regression...

But! Features in earlier
layers are learned,
non-linear.
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Setting 2: Binary Classification

Output can be in [0, 1].
Single output neuron.

We could use a linear
activation, threshold.

But there is a better way.
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Sigmoids for Classification

Natural choice for activation in output layer for
binary classification: the sigmoid.
N

n
\%
N
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Binary Classification Loss

We could use square loss for binary
classification. There are several reasons not to:

1) Square loss penalizes predictions which are
“too correct”.

2) It doesn’t work well with the sigmoid due to
saturation.
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The Cross-Entropy

Instead, we often train deep classifiers using the
cross-entropy as loss.

Let y() € {0, 1} be true label of ith example.

The average cross-entropy loss:

1 i log f(x"), ify" =1
n £ |log[1-f(xD)], ify®=0
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The Cross-Entropy and the Sigmoid

Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.
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Summary: Binary Classification

Use sigmoidal activation the output layer +
cross-entropy loss.

This will promote a strong gradient.

Use whatever activation for the hidden layers
(e.g., RelLU).
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