2SC /190

Nachine Zearm‘n?_ : Repreaaviterhong

Lecture 14 Part 1

Basic Backpropagation

1/52

Computing the Gradient

To train a neural network, we can use gradient
descent.

Involves computing the gradient of the cost
function.

Backpropagation is one method for efficiently
computing the gradient.

2/52

The Gradient

Interpreting the Gradient

The gradient has one term for each training example,
()-e(l)r y,)

If prediction for X is good, contribution to gradient is
small.

V.. f(X9; W) captures how sensitive f(X") is to value of each
parameter.

452

The Chain Rule

Recall the chain rule from calculus.
let f,g: R >R

Then:

d ,
a9 = f(g(x)) - g(x)

. . df d
Alternative notation: < f(g(x)) = d—gd—i(x)

5/52

The Chain Rule for NNs

Wl) UUU') w® Y 2 = YW U-» 4 L
. a® = o (2w)
/‘ bl“)/‘ w (w(

yp(] 1;(b(s))

6/52

Computation Graphs

a(n) :Z“’ 2

WU w"" w® y 2= YW U-» 1 PO
. @ a®= o (2w)
/ bl;)f A (w() N(‘L) w(!)
o & & "t

(3D () Hoe2
b= / 124 -
a(‘&) 2(9) a (z> P 2(;) - ac‘) I Z(‘) x

\W‘” \WC‘P) \ w o

7/52

Example

o © o ®
" DA v N . U 4
N wY o we ' w® 2W = W aU-v 4 1

0) ——> () ——> (%
Do e = T
b“’/‘ b‘”/‘ (4 B (we weo W
A~ ~ D /(w e
@ @) B 5D
B H® /i?"’

a® 2@ g — 2o x

\wlg) \wu) ~ wer

a» — 2®

8/52

General Formulas

Derivatives are defined
recursively

Of of aa® az®

Easy to compute ow® ~ 3a® . o9z . ow®)
derivatives for early layers

if we have derivatives for R R
later layers. of _ of da®M _ oz 1)

2a® ~ 3a®) oz gl
This is backpropagation.

9/52

Warning

The derivatives depend on the network
architecture
Number of hidden nodes / layers

Backprop is done automatically by your NN
library

10 /52

Backpropagation

Compute the derivatives for the last layers first; use them to
compute derivatives for earlier layers.

a(n) z"—’ Z(;)

V‘)U w“" w® Y 2 = Y@ qU-» 4 Lo
. a® = o (2w)
3
/ b f A (w() N(‘L) w(l’

@ @ @ b() b(z) b(s))

1/52

2SC /90

Machine Zearm‘n?_: ,ercw«d‘a-hm

Lecture 14 Part 2

A More Complex Example

12/52

Complexity

The strategy doesn’t change much when each
layer has more nodes.

o
@ 2 '\ g

Wz) /
e
Ok =
&

13/52

Computational Graph

1452

Example

15/52

General Formulas

b\ /”w;‘,’ of of 9a® oz

e D 3q0 370 . (@

" /< 4L ol 0a® oz 0
\\ © a® 2V %z

N of of aa® gzt
e da® ~ aglt+1) 9z(t+1) 3ql®

16 /52

2SC /190

Nachine Zearm‘n?_ : Repreaaviterhong

Lecture 14 Part 3

Intuition Behind Backprop

17/52

Intuition

®
W0

.
oS0

7
a*

2scC /90

Hachine /Zearm‘n} : Repreawviterhong

Lecture 14 Part 4
Hidden Units

19/52

Hidden Units

%
wi ®
E— %} \L B
Wiz .%

<

1]
Wi
&
2

Neuron

Neuron accepts signals
along synapses.

Synapses have weights.

If weighted sum is “large
enough”, the neuron fires,
or activates.

Cell body
Telodendria «
w §
(-
/ <
Nucleus \

Synaptic terminals

Axon hilm\
Golgi apparatus
reticulum L
Mitochondrion \\ Dendrite

Endoplasmic

/
/ \\Q Dendritic branches

21/52

Neuron

Neuron accepts weighted
inputs.

"
If weighted sum is “large E— _—
enough”, the neuron fires, /

or activates.

22 /52

Activation Functions

A function g determining whether - and how
strong - a neuron fires.

We have seen two: ReLU and linear.
Many different choices.
Guided by intuition and only a little theory.

23/52

Backpropagation

The choice of activation function affects
performance of backpropagation.

Example:
i w*Y %Ug/ W E w® b 2W= WU 4 o
O @0 ® 1T
4 /‘ b‘ / JPU)/‘ W= (w“" w® w®,

@)) B, 5, 5*)

d d (®)

f _ 9 a0y, 92

ow® ga® ow®)

24 /52

Vanishing Gradients

A major challenge in training deep neural
networks with backpropagation is that of
vanishing gradients.

The gradient for layers far from the output
becomes very small.

Weights can’t be changed.

?
af af . ,((0 aZ()

aw® aa® ¥ Sum

25/52

Main Idea

Some activation functions promote “healthier”
gradients.

26 /52

Linear Activations

1
A linear unit's activation] @
function is: 3/
2
9(2) = 2 2—> @ —

27152

Problem

®
W
IO b
. . . . w o
Linear activations result in K S

a linear prediction ><
function. @
o oid
@

28 /52

Backprop. with Linear Activations

& wY 1‘§/ @ E we * 2W= w4 LW
@ © - 2) : a® - ”—(zu’)
¥'n ¥on PP B (w0, e, w,
@ @ @ bm’ b bm)
) 9 ()
f_of g'(z9). oz’
ow® aa® ow()

29/52

Summary: Linear Activations
Good: healthy gradients, fast to compute

Bad: still results in linear prediction function
when layers are combined

30/52

Sigmoidal Activations

A basic nonlinearity.

Neuron is either “on” (1), “off” (0), or somewhere
in between.

Very popular before introduction of the RelLU.

31/52

Sigmoidal Activations

A sigmoidal unit’s activation
function is:

32/52

Sigmoidal Activations

A sigmoidal unit’s activation
function is:

9(2) = +1e_z 1 ®
Y
(D)

32/52

-1
2
1

_2%
3 /

Backprop. with Sigmoids

B (w0 o e,

P 20
©
v 7

@ @ bm’ b(”, b“’)

()
N w® v 2@ = Y U0 4 L
a® = a—(qu:)
7 ey

g'(z) = g(2)(1 - g(2))

33/52

Problem: Saturation

Large/small inputs lead g(z) to be very close to 1
or -1.

Here, the derivative o'(z) = 0.
Vanishing gradients!

Makes learning deep networks with
gradient-based algorithms very difficult.

34 /52

RelLU

Linear activations have strong gradients, but
combined are still linear.

Sigmoidal activations are non-linear, but when
saturated lead to weak gradients.

Can we have the best of both?

35/52

RelLU

A rectified linear unit’s
(ReLU) activation function is:

1
g(z) = max{0, 2} PR CY
Y
2
O
z 1
3 /

36/52

RelLU

A rectified linear unit’s
(ReLU) activation function is:

1
g(z) = max{0, 2} PRNCY
Y
2
30—
z 1
3 /

36/52

Backprop. with ReLU

o© g‘g] 20 %Lgl)
W
@ = = & = e rt)
w -
b(.) bu) JPU) “ -7 (ZU))
/‘ / 7 ﬁ:(w“"w‘“‘w“’

bm’ b b‘“’)

.aw

37/52

Backprop. with ReLU

Problem: If inputs < 0, ReLU “deactivates” and
gradients are not passed back.

0© v 2@ 2%
’ w v .@ e Y we N
@ ‘@ a® = a‘(zu))
‘b(\? bu,) b(;) N
Vs Va 7 w.,(w‘.,gm»(wu,“
@ @ B© p@, L)

38/52

Fixing Deactivated ReLUs

One fix: initialize all biases to be small, positive
numbers.

Ensures that most units are active to begin with.

Another fix: modify the RelLU.

39/52

Leaky RelLU

A leaky ReLU activation function is:

g(z) = max{az, z} 0O<ac<1

Usually, a = 0.01. Nonzero derivative.

40 /52

Summary: ReLU

The popular, “default” choice of activation
function.

Good: Strong gradient when active, fast to
compute.

Bad: No gradient when inactive.

41/52

2SC /190

Nachine Zearm‘n?_ : Repreaaviterhong

Lecture 14 Part 5

Output Units

42 /52

Output Units

As with units in hidden layers, we can customize

output units.
What activation function?
How many units?

Good choice depends on task:
Regression, binary classification, multiclass, etc.

Which loss?

43 /52

Setting 1: Regression

Output can be any real
number.

Single output neuron.

It makes sense to use a
linear activation.

1

. ®

Y
O

3

f/,

44 [52

Setting 1: Regression
Prediction should not be too high/low.

It makes sense to use the mean squared error.

45 /52

Setting 1: Regression

Suppose we use linear
activation for output
neuron + mean squared
error.

This is very similar to least
squares regression...

But! Features in earlier
layers are learned,
non-linear.

46 /52

Setting 2: Binary Classification

Output can be in [0, 1].
Single output neuron.

We could use a linear
activation, threshold.

But there is a better way.

' ®

2
2 —>
s
3

(D—>

47152

Sigmoids for Classification

Natural choice for activation in output layer for
binary classification: the sigmoid.
N

n
\%
N

48 /52

Binary Classification Loss

We could use square loss for binary
classification. There are several reasons not to:

1) Square loss penalizes predictions which are
“too correct”.

2) It doesn’t work well with the sigmoid due to
saturation.

49 /52

The Cross-Entropy

Instead, we often train deep classifiers using the
cross-entropy as loss.

Let y() € {0, 1} be true label of ith example.

The average cross-entropy loss:

1 i log f(x"), ify" =1
n £ |log[1-f(xD)], ify®=0

50 /52

The Cross-Entropy and the Sigmoid

Cross-entropy “undoes” the exponential in the
sigmoid, resulting in less saturation.

51/52

Summary: Binary Classification

Use sigmoidal activation the output layer +
cross-entropy loss.

This will promote a strong gradient.

Use whatever activation for the hidden layers
(e.g., RelLU).

52 /52

