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NNs and Representations






NNs and Representations

Hidden layer transforms to
new representation.

Maps R? — R®

Output layer makes
prediction.

Maps R®> - R’

Representation optimized for
classification!



NN Design
Design a network for classification.
Hidden layer activations: RelLU
Output layer activation: sigmoid

Loss function: cross-entropy



from tensorflow import keras

inputs = keras.Input(shape=2)

hidden_1 = keras.layers.Dense(5, activation='relu')(inputs)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_1)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(

optimizer=keras.optimizers.RMSprop(learning_rate=.01),
loss=keras.losses.BinaryCrossentropy()

history = model.fit(X, y, epochs=1000, verbose=1)



Results
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NNs and Representations
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Data has complex
structure.

Only 5 hidden neurons not Q
enough to learn a good
representation.
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Architecture
We can increase complexity in two ways:
Increasing width.

Increasing depth.



Increasing Width

Use a single hidden layer. /
But with 50 hidden

neurons instead of 5.

l.e., map to R*°, then

predict. \
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cross-entropy loss

Loss
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Result




Universal Approximation Theorem
A neural network f is a special type of function.

Given another function g, can we make a neural
network f so that f(X) ~ g(X)?

Yes! Assuming:
f has a hidden layer with a suitable activation
function (RelLU, sigmoid, etc.)
the hidden layer has enough neurons
g is not too wild.



A network with a single hidden layer is able to ap-
proximate any (not-too-wild) function arbitrarily
well as long as it has enough neurons in the hid-
den layer.




So what?

Nature uses some function g to assign class
labels to data.

We don't see this function. But we see g(X) for a
bunch of points.

Our goal is to learn a function f approximating g
using this data.



The Challenge

NNs are universal approximators (so are RBF
networks, etc.)

But just because it can approximate any function,
doesn’t mean we can learn the approximation.



Number of Neurons

UAT says one hidden layer works well with
“enough neurons”

What is enough?

Unfortunately, it can be a lot!
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Deep Networks

Use a multiple hidden ‘(_\ (‘:
layers. (;M
['\N\

Hidden layers transform to /

a new representation. Q
\’O

Composition of simple

transformations. \
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Main Idea

In machine learning, “deep” means “more than one
hidden layer”. Deep models are useful for learning
simpler representations.




Designing a Deep NN
Pick a number of hidden layers.
Pick width of each hidden layer.
There's not much theory to help us here.

Experiment with different choices.



inputs = keras.Input(shape=2)

hidden_1 = keras.layers.Dense(15, activation='relu')(inputs)
hidden_2 = keras.layers.Dense(20, activation='relu')(hidden_1)
hidden_3 = keras.layers.Dense(2, activation='relu')(hidden_2)

outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_3)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(

optimizer=keras.optimizers.RMSprop(learning_rate=.001),
loss=keras.losses.BinaryCrossentropy()

history = model.fit(X, y, epochs=1000, verbose=1)



Loss

cross-entropy loss
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Result




Deep Networks

Hidden layers map input
to new representation.

)
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We can see this new @/Q
representation! i O
R0

Plugin X and see N
activations of last hidden N\

layer.



Learning a New Representation




Learning a New Representation
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Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation
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Learning a New Representation
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Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Learning a New Representation




Deep Networks and Approximation
Deep networks are also universal approximators.

May require fewer nodes and/or parameters
than single hidden layer.

l.e., there exist functions which require an
exponential number of nodes to approximate
with a single hidden layer, but not with several
layers.



Challenges

The deeper the network, the weaker the gradient
gets.

Very non-convex!

Deeper networks are harder to learn.
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From Simple to Complex
Complex shapes are made of simple patterns
The human visual system uses this fact

Line detector — shape detector — ... - face
detector

Can we replicate this with a deep NN?



Edge Detector

How do we find vertical
edges in an image?

One solution: convolution
with an edge filter.




Vertical Edge Filter
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Idea

Move the filter over the entire image, repeat
procedure.
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Idea

Move the filter over the entire image, repeat
procedure.
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Idea

Move the filter over the entire image, repeat
procedure.
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Idea

Move the filter over the entire image, repeat
procedure.
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Idea

Move the filter over the entire image, repeat
procedure.
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Convolution

The result is the (2d) convolution of the filter
with the image.

Output is also 2-dimensional array.

Called a response map.



Example: Vertical Filter




Example: Horizontal Filter
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More About Filters

Typically 3x3 or 5x5.

Variations: different stride, image padding.



3-d Filters

Black and white images are 2-d arrays.

But color images are 3-d arrays:
a.k.a., tensors
Three color channels: red, green, blue.
height x width x 3

How does convolution work here?



Color Image




3-d Filter

The filter must also have three channels:

3x3x3,5x5x3, etc.




3-d Filter




3-d Filter




3-d Filter




Convolution with 3-d Filter

Filter must have same number of channels as
image.
3 channels if image RGB.

Result is still a 2-d array.



General Case

has kR

Input “image”

channels.
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