2SC /90

Machine Zearm‘n?_: Repreawitachons

Lecture 15 | Part 1

NNs and Representations

NNs and Representations

Hidden layer transforms to
new representation.

Maps R? — R®

Output layer makes
prediction.

Maps R®> - R’

Representation optimized for
classification!

NN Design
Design a network for classification.
Hidden layer activations: RelLU
Output layer activation: sigmoid

Loss function: cross-entropy

from tensorflow import keras

inputs = keras.Input(shape=2)

hidden_1 = keras.layers.Dense(5, activation='relu')(inputs)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_1)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(

optimizer=keras.optimizers.RMSprop(learning_rate=.01),
loss=keras.losses.BinaryCrossentropy()

history = model.fit(X, y, epochs=1000, verbose=1)

Results

0.8

0.7 4

06
S
205
>
£ 0.4
?
203
5

02

0.14

0.0

0 200 400 600 800 1000

NNs and Representations
o (w, ¥ +W1KL+W°

Data has complex
structure.

Only 5 hidden neurons not Q
enough to learn a good
representation.

N

o\

QQQQ

2SC /190

Machine Zearm‘n} : ,QemAM"m‘wm

Lecture 15 @ Part 2

Architecture

Architecture
We can increase complexity in two ways:
Increasing width.

Increasing depth.

Increasing Width

Use a single hidden layer. /
But with 50 hidden

neurons instead of 5.

l.e., map to R*°, then

predict. \

OO

N

7@

®
O

®)
Q

O

cross-entropy loss

Loss

0.8

0.7 1

0.6 A

0.5 1

0.4 1

0.3

0.2 1

0.11 NS

0.0 T T

0 200 400 600 800 1000
epoch

Result

Universal Approximation Theorem
A neural network f is a special type of function.

Given another function g, can we make a neural
network f so that f(X) ~ g(X)?

Yes! Assuming:
f has a hidden layer with a suitable activation
function (RelLU, sigmoid, etc.)
the hidden layer has enough neurons
g is not too wild.

A network with a single hidden layer is able to ap-
proximate any (not-too-wild) function arbitrarily
well as long as it has enough neurons in the hid-
den layer.

So what?

Nature uses some function g to assign class
labels to data.

We don't see this function. But we see g(X) for a
bunch of points.

Our goal is to learn a function f approximating g
using this data.

The Challenge

NNs are universal approximators (so are RBF
networks, etc.)

But just because it can approximate any function,
doesn’t mean we can learn the approximation.

Number of Neurons

UAT says one hidden layer works well with
“enough neurons”

What is enough?

Unfortunately, it can be a lot!

2sc /90

Machine Zearm‘n?_: Repreawvitechons

Lecture 15 | Part 3

Deep Networks

Deep Networks

Use a multiple hidden ‘(_\ (‘:
layers. (;M
['\N\

Hidden layers transform to /

a new representation. Q
\’O

Composition of simple

transformations. \

cupwlarerertorns_pyos [(4; (% <€. w)))

Main Idea

In machine learning, “deep” means “more than one
hidden layer”. Deep models are useful for learning
simpler representations.

Designing a Deep NN
Pick a number of hidden layers.
Pick width of each hidden layer.
There's not much theory to help us here.

Experiment with different choices.

inputs = keras.Input(shape=2)

hidden_1 = keras.layers.Dense(15, activation='relu')(inputs)
hidden_2 = keras.layers.Dense(20, activation='relu')(hidden_1)
hidden_3 = keras.layers.Dense(2, activation='relu')(hidden_2)

outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_3)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(

optimizer=keras.optimizers.RMSprop(learning_rate=.001),
loss=keras.losses.BinaryCrossentropy()

history = model.fit(X, y, epochs=1000, verbose=1)

Loss

cross-entropy loss
© o © o o o o
N w E~ w o ~ [e¢]
) ! ! A A)

o
=
.

o
=)

200

400
epoch

600

800

1000

Result

Deep Networks

Hidden layers map input
to new representation.

)

o/

We can see this new @/Q
representation! i O
R0

Plugin X and see N
activations of last hidden N\

layer.

Learning a New Representation

Learning a New Representation

3

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

® %
R AT

Y 3

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Learning a New Representation

Deep Networks and Approximation
Deep networks are also universal approximators.

May require fewer nodes and/or parameters
than single hidden layer.

l.e., there exist functions which require an
exponential number of nodes to approximate
with a single hidden layer, but not with several
layers.

Challenges

The deeper the network, the weaker the gradient
gets.

Very non-convex!

Deeper networks are harder to learn.

2SC /190

Machine Zearm‘n} : ,QemAM"m‘wm

Lecture 16 = Part 1

Convolutions

From Simple to Complex
Complex shapes are made of simple patterns
The human visual system uses this fact

Line detector — shape detector — ... - face
detector

Can we replicate this with a deep NN?

Edge Detector

How do we find vertical
edges in an image?

One solution: convolution
with an edge filter.

Vertical Edge Filter

S
<
~

Idea 0« + -1vg0 + | 255
+ Ox5+-|x\004+ | >230

image patch:
Take a patch of the image, O |80 v
same size as filter. 5 [0 (g%0
Perform “dot product” 0 o 246
between patch and filter.

filter

If large, this is a (vertical) PV AR
edge.

o |-/

o -1

Idea

Move the filter over the entire image, repeat
procedure.

0ojojo o(o0] O
ofojolofo]|.7)
0OJjoj9jo|(O0].8
-
o|0o|.8[0]|]0]|.9 * :-'
)| =
0o|0|.7l0]0f{O
0=

Idea

Move the filter over the entire image, repeat
procedure.

0ojojo 0joj|o
olol.9|ofo|.7 9|19
0jJ0o|9|j0}]O0]|.8
0 |-

olo|.8|ofo].9 *

~) |\ —_
olo|.7|ofo0fo0 ’

=1

Idea

Move the filter over the entire image, repeat
procedure.

olojo|o|o]o
ololo|lo]o]7 1% -/.g| 0
ojlololofols
olo|8|ofo0].9 o

Xk [b =
olo|.7lo0]o0]0

Idea

Move the filter over the entire image, repeat
procedure.

olofo|ofo]o
olololo|o]|.7
olo|oflo|o|s
olo|8|o]of.9 _
olo|.7l0]o0]o0 * -

Idea

Move the filter over the entire image, repeat
procedure.

olofo|ofo]o
ololololo]|.7
olo|ofo]ols
olo[.8]o]of.9 _
olo|.7[o]o0]o0 * -

Convolution

The result is the (2d) convolution of the filter
with the image.

Output is also 2-dimensional array.

Called a response map.

Example: Vertical Filter

Example: Horizontal Filter

‘ olo|o
X |- =
s

More About Filters

Typically 3x3 or 5x5.

Variations: different stride, image padding.

3-d Filters

Black and white images are 2-d arrays.

But color images are 3-d arrays:
a.k.a., tensors
Three color channels: red, green, blue.
height x width x 3

How does convolution work here?

Color Image

3-d Filter

The filter must also have three channels:

3x3x3,5x5x3, etc.

3-d Filter

3-d Filter

3-d Filter

Convolution with 3-d Filter

Filter must have same number of channels as
image.
3 channels if image RGB.

Result is still a 2-d array.

General Case

has kR

Input “image”

channels.

NNNNNNNNE
R A A A Y A Y Y
[[T][]]]]

[][]]]]

[T
[T T
x| & .m
z8m B
ET ¥ L

