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NNs and Representations





NNs and Representations

▶ Hidden layer transforms to
new representation.▶ Maps ℝ2 → ℝ5▶ Output layer makes
prediction.▶ Maps ℝ5 → ℝ1▶ Representation optimized for
classification!



NN Design▶ Design a network for classification.▶ Hidden layer activations: ReLU▶ Output layer activation: sigmoid▶ Loss function: cross-entropy



from tensorflow import keras

inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(5, activation='relu')(inputs)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_1)

model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(
optimizer=keras.optimizers.RMSprop(learning_rate=.01),
loss=keras.losses.BinaryCrossentropy()

)

history = model.fit(X, y, epochs=1000, verbose=1)



Results



NNs and Representations

▶ Data has complex
structure.▶ Only 5 hidden neurons not
enough to learn a good
representation.
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Architecture



Architecture▶ We can increase complexity in two ways:▶ Increasing width.▶ Increasing depth.



Increasing Width

▶ Use a single hidden layer.▶ But with 50 hidden
neurons instead of 5.▶ I.e., map to ℝ50, then
predict.



Loss



Result



Universal Approximation Theorem▶ A neural network 𝑓 is a special type of function.▶ Given another function 𝑔, can we make a neural
network 𝑓 so that 𝑓( ⃗𝑥) ≈ 𝑔( ⃗𝑥)?▶ Yes! Assuming:▶ 𝑓 has a hidden layer with a suitable activation

function (ReLU, sigmoid, etc.)▶ the hidden layer has enough neurons▶ 𝑔 is not too wild.



Main Idea
A network with a single hidden layer is able to ap-
proximate any (not-too-wild) function arbitrarily
well as long as it has enough neurons in the hid-
den layer.



So what?▶ Nature uses some function 𝑔 to assign class
labels to data.▶ We don’t see this function. But we see 𝑔( ⃗𝑥) for a
bunch of points.▶ Our goal is to learn a function 𝑓 approximating 𝑔
using this data.



The Challenge▶ NNs are universal approximators (so are RBF
networks, etc.)▶ But just because it can approximate any function,
doesn’t mean we can learn the approximation.



Number of Neurons▶ UAT says one hidden layer works well with
“enough neurons”▶ What is enough?▶ Unfortunately, it can be a lot!
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Deep Networks



Deep Networks▶ Use a multiple hidden
layers.▶ Hidden layers transform to
a new representation.▶ Composition of simple
transformations.▶ Output layer performs
prediction.
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Main Idea
Inmachine learning, “deep”means “more than one
hidden layer”. Deep models are useful for learning
simpler representations.



Designing a Deep NN▶ Pick a number of hidden layers.▶ Pick width of each hidden layer.▶ There’s not much theory to help us here.▶ Experiment with different choices.



inputs = keras.Input(shape=2)
hidden_1 = keras.layers.Dense(15, activation='relu')(inputs)
hidden_2 = keras.layers.Dense(20, activation='relu')(hidden_1)
hidden_3 = keras.layers.Dense(2, activation='relu')(hidden_2)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_3)

model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(
optimizer=keras.optimizers.RMSprop(learning_rate=.001),
loss=keras.losses.BinaryCrossentropy()

)

history = model.fit(X, y, epochs=1000, verbose=1)



Loss



Result



Deep Networks▶ Hidden layers map input
to new representation.▶ We can see this new
representation!▶ Plug in ⃗𝑥 and see
activations of last hidden
layer.



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation
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Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Learning a New Representation



Deep Networks and Approximation▶ Deep networks are also universal approximators.▶ May require fewer nodes and/or parameters
than single hidden layer.▶ I.e., there exist functions which require an
exponential number of nodes to approximate
with a single hidden layer, but not with several
layers.



Challenges▶ The deeper the network, the weaker the gradient
gets.▶ Very non-convex!▶ Deeper networks are harder to learn.
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Convolutions



+ +



From Simple to Complex▶ Complex shapes are made of simple patterns▶ The human visual system uses this fact▶ Line detector→ shape detector→ …→ face
detector▶ Can we replicate this with a deep NN?



Edge Detector

▶ How do we find vertical
edges in an image?▶ One solution: convolution
with an edge filter.



Vertical Edge Filter
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Idea

▶ Take a patch of the image,
same size as filter.▶ Perform “dot product”
between patch and filter.▶ If large, this is a (vertical)
edge.

image patch:

filter:

0×01--1×80 1- I ✗255

1- 0×5 t - l ✗ 100 1- I ✗230

0 80 255

5 100 230
0 50 240
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Idea▶ Move the filter over the entire image, repeat
procedure.
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Idea▶ Move the filter over the entire image, repeat
procedure.
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Idea▶ Move the filter over the entire image, repeat
procedure.

.8

.9

.9

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

.8

.7

.7

.9 =�

1.8 -1.80

:
0



Idea▶ Move the filter over the entire image, repeat
procedure.
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Idea▶ Move the filter over the entire image, repeat
procedure.
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Convolution▶ The result is the (2d) convolution of the filter
with the image.▶ Output is also 2-dimensional array.▶ Called a response map.



Example: Vertical Filter



Example: Horizontal Filter
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More About Filters▶ Typically 3×3 or 5×5.▶ Variations: different stride, image padding.



3-d Filters▶ Black and white images are 2-d arrays.▶ But color images are 3-d arrays:▶ a.k.a., tensors▶ Three color channels: red, green, blue.▶ height × width × 3▶ How does convolution work here?



Color Image



3-d Filter▶ The filter must also have three channels:▶ 3 × 3 × 3, 5 × 5 × 3, etc.
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3-d Filter



3-d Filter



3-d Filter

FEI



Convolution with 3-d Filter▶ Filter must have same number of channels as
image.▶ 3 channels if image RGB.▶ Result is still a 2-d array.



General Case

▶ Input “image” has 𝑘
channels.▶ Filter must have 𝑘
channels as well.▶ e.g., 3 × 3 × 𝑘▶ Output is still 2 − 𝑑


