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NNs and Representations
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NNs and Representations

Hidden layer transforms to
new representation.

Maps R? - R®

Output layer makes
prediction.

Maps R®> —» R’

Representation optimized for
classification!
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NN Design
Design a network for classification.
Hidden layer activations: ReLU
Output layer activation: sigmoid

Loss function: cross-entropy
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from tensorflow import keras

inputs = keras.Input(shape=2)

hidden_1 = keras.layers.Dense(5, activation="relu')(inputs)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_1)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(

optimizer=keras.optimizers.RMSprop(learning_rate=.01),
loss=keras.losses.BinaryCrossentropy()

history = model.fit(X, y, epochs=1000, verbose=1)
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Results
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NNs and Representations

O

Data has complex /
structure.

Only 5 hidden neurons not

enough to learn a good

representation. \
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Architecture

We can increase complexity in two ways:
Increasing width.

Increasing depth.
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Increasing Width

Use a single hidden layer.

But with 50 hidden
neurons instead of 5.

l.e., map to R*°, then
predict.
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cross-entropy loss
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Result
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Universal Approximation Theorem
A neural network f is a special type of function.

Given another function g, can we make a neural
network f so that f(X) = g(X)?

Yes! Assuming:
f has a hidden layer with a suitable activation
function (RelLU, sigmoid, etc.)
the hidden layer has enough neurons
g is not too wild.
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A network with a single hidden layer is able to ap-
proximate any (not-too-wild) function arbitrarily
well as long as it has enough neurons in the hid-
den layer.
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So what?

Nature uses some function g to assign class
labels to data.

We don't see this function. But we see g(X) for a
bunch of points.

Our goal is to learn a function f approximating g
using this data.
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The Challenge

NNs are universal approximators (so are RBF
networks, etc.)

But just because it can approximate any function,
doesn’'t mean we can learn the approximation.
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Number of Neurons

UAT says one hidden layer works well with
“enough neurons”

What is enough?

Unfortunately, it can be a lot!
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Deep Networks

Use a multiple hidden
layers.

Hidden layers transform to
a new representation.
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Composition of simple
transformations.
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Output layer performs
prediction.
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Main Idea

In machine learning, “deep” means “more than one
hidden layer”. Deep models are useful for learning
simpler representations.
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Designing a Deep NN
Pick a number of hidden layers.
Pick width of each hidden layer.
There’s not much theory to help us here.

Experiment with different choices.
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inputs = keras.Input(shape=2)

hidden_1 = keras.layers.Dense(15, activation='relu')(inputs)
hidden_2 = keras.layers.Dense(20, activation='relu')(hidden_1)
hidden_3 keras.layers.Dense(2, activation='relu')(hidden_2)
outputs = keras.layers.Dense(1, activation='sigmoid')(hidden_3)

model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(
optimizer=keras.optimizers.RMSprop(learning_rate=.001),
loss=keras.losses.BinaryCrossentropy()

history = model.fit(X, y, epochs=1000, verbose=1)
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cross-entropy loss

Loss

o
©

©
N
)

o
o
)

©
n
1

o
i
L

o
w
)

o
N]
)

e
s
.

o
=)

200

400
epoch

600

800

1000

23/ 46



Result
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Deep Networks

Hidden layers map input
to new representation.

Y

We can see this new
representation!
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Plug in X and see
activations of last hidden
layer.
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The New Representation
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Learning a New Representation
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Learning a New Representation

% e e
g G b
.«f.& &#..?.i. &2
T A Rie a5
R, N e £ &S
M .ﬁ.ﬂ ° 88 . Mz. * & .l.
MW«* n.oﬁolo v-uswm*.o o Dw.d..
TR S e W 8,

27 46



Learning a New Representation
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Learning a New Representation

®

5.
% A%,
° ’-.l

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Learning a New Representation

27 46



Deep Networks and Approximation
Deep networks are also universal approximators.

May require fewer nodes and/or parameters
than single hidden layer.

l.e., there exist functions which require an
exponential number of nodes to approximate
with a single hidden layer, but not with several
layers.
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Challenges

The deeper the network, the weaker the gradient
gets.

Very non-convex!

Deeper networks are harder to learn.

29 /46



2scC /90

Hachine /Zearm‘n} : Repreawviterhong

Lecture 15  Part 4

Convolutions

30/ 46






From Simple to Complex
Complex shapes are made of simple patterns
The human visual system uses this fact

Line detector — shape detector — ... - face
detector

Can we replicate this with a deep NN?
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Edge Detector

How do we find vertical
edges in an image?

One solution: convolution
with an edge filter.
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Vertical Edge Filter




Idea

Take a patch of the image,
same size as filter.

Perform “dot product”
between patch and filter.

If large, this is a (vertical)
edge.

image patch:

filter:
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Idea

Move the filter over the entire image, repeat
procedure.
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Convolution

The result is the (2d) convolution of the filter
with the image.

Output is also 2-dimensional array.

Called a response map.
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Example: Vertical Filter
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Example: Horizontal Filter
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More About Filters

Typically 3x3 or 5x5.

Variations: different stride, image padding.

40 [ 46



3-d Filters

Black and white images are 2-d arrays.

But color images are 3-d arrays:
a.k.a., tensors
Three color channels: red, green, blue.
height x width x 3

How does convolution work here?
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Color Image




3-d Filter

The filter must also have three channels:

3x3x3,5x5x3, etc.
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3-d Filter




3-d Filter




3-d Filter




Convolution with 3-d Filter

Filter must have same number of channels as
image.
3 channels if image RGB.

Result is still a 2-d array.
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General Case
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