
Discussion 5 Solutions 1

Discussion 5 Solutions
NOTE All of these solutions are available on practice.dsc80.com — this is just so you can
see everything on one place.

FA23 Midterm Problem 4

Problem
To generate a single sample under his null hypothesis, Alan should

A. Resample 744 donkeys with replacement from donkeys .

B. Resample 372 donkeys with replacement from donkeys with 'BCS'  3, and another 372
donkeys with 'BCS'  3.

C. Randomly permute the 'Weight' column.

Solution
Answer: C

The null hypothesis is “Donkeys with 'BCS'  3 have the same 'Weight' values on average
compared to donkeys that have 'BCS'  3 .ˮ Under the null hypothesis, we should have similar
results with a shuffled dataset.

Options A and B shuffle with replacement (bootstrapping), while option C shuffles without
replacement (permutation is done without replacement). Bootstrapping is generally used to
estimate confidence intervals, while permutation tests are a kind of hypothesis test. In this case,
we are performing a hypothesis test, so we want to permute the
'Weight' column.

Problem
Doris wants to use multiple imputation to fill in the missing values in 'WeightAlt' . She knows that
'WeightAlt' is MAR conditional on 'BCS' and 'Age' , so she will perform multiple imputation
conditional on 'BCS' and 'Age' - each missing value will be filled in with values
from a random
'WeightAlt' value from a donkey with the same 'BCS' and 'Age' . Assume that all 'BCS' and
'Age' combinations have observed WeightAlt values. Fill in the blanks in the code below to
estimate the median of 'WeightAlt' using multiple imputation conditional on 'BCS' and 'Age' with
100 repetitions. A function impute is also partially filled in for you, and you should use it in your
answer.

http://practice.dsc80.com/

Discussion 5 Solutions 2

Solution

def impute(col):

 col = col.copy()

 n = col.isna().sum()

 fill = np.random.choice(col.dropna(), n)

 col[col.isna()] = fill

 return col

results = []

for i in range(100):

 imputed = (donkeys.groupby(['BCS', 'Age'])['WeightAlt'].transform(impu

 results.append(imputed.median())

We start with the bottom five blanks as we are not sure what the parameter of impute(col) is
until we write the function call first. We see that we are using a loop, and seeing that we are
doing multiple imputation with 100 reputations, we can fill in range(100) . We then define the
variable
imputed , which we can see from the last line of code that calls imputed.median() should be a list of
'WeightAlt' that has imputed values. Since we want to make
our imputation conditional on
'BCS' and 'Age' , we can fill in the next blank with a groupby method and pass in the list of
columns we want - ['BCS', 'Age'] . We can see we have then selected the 'WeightAlt' column in
the problem, and so we need to use our impute function on that series. We can do so with a
transform method and then pass in impute . Note this can also be done with apply and receive
credit, but this is our solution.

Now, we can define the impute function to impute missing values from col . Since we have
already aggregated on ['BCS', 'Age'] , we know that our given col has samples all of the same
'BCS' and 'Age' values. Therefore, to impute as defined in the question, we just need to fill in
NaN values with any other value from col , chosen at random. We can see we will use

np.random.choice , which takes in its first parameter possible choices in a list, and in its second
parameter the number of choices to make. The number of choices to make we can define as n ,
which is the number of NaN values. This is found with col.isna().sum() . Then our possible
choices are any non- NaN values in col , which we can use col.dropna() to find. Finally, we fill in
the NaN values in col by masking for the NaN indices with col[col.isna()] , and set it equal to our
fill values. That will successfully impute values into our col and we can then return it.

WI23 Final Problem 1

Problem

Discussion 5 Solutions 3

The DataFrame sat contains one row for most combinations of "Year" and "State" , where
"Year" ranges between 2005 and 2015 and "State" is one of the 50 states (not including the
District of Columbia).

The other columns are as follows:

"# Students" contains the number of students who took the SAT in that state in that year.

"Math" contains the mean math section score among all students who took the SAT in that
state in that year. This ranges from 200 to 800.

"Verbal" contains the mean verbal section score among all students who took the SAT in
that state in that year. This ranges from 200 to 800. This is now known as the “Critical
Readingˮ section.)

The first few rows of sat are shown below (though sat has many more rows than are pictured
here).

The data description stated that there is one row in sat for most combinations of "Year"
(between 2005 and 2015 , inclusive) and "State" . This means that for most states, there are 11
rows in sat — one for each year between 2005 and 2015, inclusive.

It turns out that there are 11 rows in sat for all 50 states, except for one state. Fill in the blanks
below so that missing_years evaluates to an array, sorted in any order, containing the years for
which that one state does not appear in sat .

Solution

Discussion 5 Solutions 4

state_only = sat.groupby("State").filter(lambda df: df.shape[0] < 11)

merged = sat["Year"].value_counts().to_frame().merge(

 state_only, left_index=True, right_on='Year', how='left'

) # an outer merge also works!

missing_years = merged[merged['# Students'].isna()]['Year'].to_numpy()

Blank A

The initial step (in the state_only variable) involves identifying the state that has fewer than 11
records in the dataset. This is achieved by the lambda function lambda df: df.shape[0] < 11 ,
leaving us with records from only the state that has missing data for certain years.

Blank B

Next, applying .value_counts() to sat["Year"] produces a Series that enumerates the total
occurrences of each year from 2005 to 2015. Converting this Series to a DataFrame with
.to_frame() , we then merge it with the state_only DataFrame. This merging results in a
DataFrame (merged) where the years lacking corresponding entries in state_only are marked as
NaN.

Blank C

Finally, the expression merged[merged['# Students'].isna()]['Year'] in missing_years identifies the
specific years that are absent for the one state in the sat dataset. This is determined by
selecting years in the merged DataFrame where the "# Students" column has NaN values,
indicating missing data for those years.

Problem
The following DataFrame contains summary statistics for all SAT takers in New York and Texas
from 2005 to 2015. Suppose we want to run a statistical test to assess whether the distributions
of the number of students between 2005 and 2015 in New York and Texas are significantly
different.

Discussion 5 Solutions 5

Given the information in the above DataFrame, which test statistic is most likely to yield a
significant difference?

The Kolmogorov-Smirnov statistic

Solution
Answer: The Kolmogorov-Smirnov statistic

Here, the means and medians of the two samples are similar, so their observed difference in
means and observed difference in medians are both small. This means that a permutation test
using either one of those as a test statistic will likely fail to yield a significant difference.
However, the standard deviations of both distributions are quite different, which means the
shapes of the distributions are quite different. The Kolmogorov-Smirnov statistic measures the
distance between two distributions by considering their entire shape, and since these
distributions have very different shapes, they will likely have a larger Kolmogorov-Smirnov
statistic than expected under the null.

mean number of students in Texas − mean number of students in New Y ork

∣mean number of students in Texas − mean number of students in New Y ork ∣

∣median number of students in Texas −
 median number of students in New Y ork ∣

