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Why trees?

• interpretable/intuitive, popular in medical applications because they mimic
the way a doctor thinks

• model discrete outcomes nicely

• can be very powerful, can be as complex as you need them

• C4.5 and CART - from “top 10” - decision trees are very popular

Some real examples (from Russell & Norvig, Mitchell)

• BP’s GasOIL system for separating gas and oil on offshore platforms - deci-
sion trees replaced a hand-designed rules system with 2500 rules. C4.5-based
system outperformed human experts and saved BP millions. (1986)

• learning to fly a Cessna on a flight simulator by watching human experts
fly the simulator (1992)

• can also learn to play tennis, analyze C-section risk, etc.

How to build a decision tree:

• Start at the top of the tree.

• Grow it by “splitting” attributes one by one. To determine which attribute
to split, look at “node impurity.”

• Assign leaf nodes the majority vote in the leaf.

• When we get to the bottom, prune the tree to prevent overfitting

Why is this a good way to build a tree?
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I have to warn you that C4.5 and CART are not elegant by any means that I
can define elegant. But the resulting trees can be very elegant. Plus there are
2 of the top 10 algorithms in data mining that are decision tree algorithms! So
it’s worth it for us to know what’s under the hood... even though, well... let’s
just say it ain’t pretty.

Example: Will the customer wait for a table? (from Russell & Norvig)

Here are the attributes:

Here are the examples:

Here are two options for the first feature to split at the top of the tree. Which
one should we choose? Which one gives me the most information?
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Alternate: whether there is a suitable alternative restaurant nearby.

Bar: whether the restaurant has a comfortable bar area to wait in.

Fri/Sat: true on Fridays and Saturdays.

Hungry: whether we are hungry.

Patrons: how many people are in the restaurant (values are None, Some, and Full).

Price: the restaurant's price range ($, $$, $$$).

Raining: whether it is raining outside. 

Reservation: whether we made a reservation.

Type: the kind of restaurant (French, Italian, Thai or Burger).

WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

2.

1.

3.

4.

5.

6.

7.

8.

9.

10.

Image by MIT OpenCourseWare, adapted from Russell and Norvig, Artificial Intelligence:
A Modern Approach, Prentice Hall, 2009.

Yes Yes Yes YesX1 No No NoSome $$$ French 0-10
Yes YesX2 No No No No NoFull $ Thai 30-60

Yes YesNoX3 No No No NoSome $ Burger 0-10
Yes Yes Yes YesX4 No No NoFull $ Thai 10-30
Yes Yes YesX5 No No No NoFull $$$ French >60

Yes Yes Yes Yes YesNoX6 No Some $$ Italian 0-10
Yes YesX7 No No No No NoNone $ Burger 0-10

Yes Yes Yes YesX8 No No No Some $$ Thai 0-10
Yes Yes YesX9 No No No NoFull $ Burger >60
Yes Yes Yes YesYesX10 No NoFull $$$ Italian 10-30

X11 No No No No No No NoNone $ Thai 0-10
Yes Yes Yes YesYesX12 No NoFull $ Burger 30-60

Alt Bar Fri Hun Pat Price Rain Res Type Est
Example

Attributes Goal

WillWait

Image by MIT OpenCourseWare, adapted from Russell and Norvig, Artificial Intelligence:
A Modern Approach, Prentice Hall, 2009.



What we need is a formula to compute “information.” Before we do that, here’s
another example. Let’s say we pick one of them (Patrons). Maybe then we’ll
pick Hungry next, because it has a lot of “information”:

We’ll build up to the derivation of C4.5. Origins: Hunt 1962, ID3 of Quinlan
1979 (600 lines of Pascal), C4 (Quinlan 1987). C4.5 is 9000 lines of C (Quinlan
1993). We start with some basic information theory.
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Image by MIT OpenCourseWare, adapted from Russell and Norvig,
Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.
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Information Theory (from slides of Tom Carter, June 2011)

“Information” from observing the occurrence of an event

:= #bits needed to encode the probability of the event p = − log2 p.

E.g., a coin flip from a fair coin contains 1 bit of information. If the event has
probability 1, we get no information from the occurrence of the event.

Where did this definition of information come from? Turns out it’s pretty cool.
We want to define I so that it obeys all these things:

• I(p) ≥ 0, I(1) = 0; the information of any event is non-negative, no infor-
mation from events with prob 1

• I(p1 · p2) = I(p1) + I(p2); the information from two independent events
should be the sum of their informations

• I(p) is continuous, slight changes in probability correspond to slight changes
in information

Together these lead to:

I(p2) = 2I(p) or generally I(pn) = nI(p),

this means that

1
I(p) = I

(
(p1/m)m

)
= mI

(
p1/m

)
so I(p) = I

(
p1/m

m

and more generally,

)

I
(
pn/m

) n
= I(p).
m

This is true for any fraction n/m, which includes rationals, so just define it for
all positive reals:

I(pa) = aI(p).

The functions that do this are I(p) = − logb(p) for some b. Choose b = 2 for
“bits.”
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Flipping a fair coin gives − log2(1/2) = 1 bit of information if it comes up either
heads or tails.

A biased coin landing on heads with p = .99 gives − log2(.99) = .0145 bits of
information.

A biased coin landing on heads with p = .01 gives − log2(.01) = 6.643 bits of
information.

Now, if we had lots of events, what’s the mean information of those events?
Assume the events v1, ..., vJ occur with probabilities p1, ..., pJ , where [p1, ..., pJ ]
is a discrete probability distribution.

∑J
Ep [p1,...,pJ ]I(p) = pjI(p∼ j) =

j=1

−
∑

pj log2 pj =: H(p)
j

where p is the vector [p1, ..., pJ ]. H(p) is called the entropy of discrete distri-
bution p.

So if there are only 2 events (binary), with probabilities p = [p, 1− p],

H(p) = −p log2(p)− (1− p) log2(1− p).

If the probabilities were [1/2, 1/2],

1 1
H(p) = −2 log2 = 1 (Yes, we knew that.)

2 2

Or if the probabilities were [0.99, 0.01],

H(p) = 0.08 bits.

As one of the probabilities in the vector p goes to 1, H(p) → 0, which is what
we want.

Back to C4.5, which uses Information Gain as the splitting criteria.
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Back to C4.5 (source material: Russell & Norvig, Mitchell, Quinlan)
We consider a “test” split on attribute A at a branch.

In S we have #pos positives and #neg negatives. For each branch j, we have
#posj positives and #negj negatives.

The training probabilities[ in branch j are:

#posj #negj
,

#posj + #negj #posj + #negj

]
.

The Information Gain is calculated like this:

Gain(S,A) = expected reduction in entropy due to branching on attribute A

= original([ entropy− entropy after branching
#pos #neg

= H ,
#pos + #neg #pos + #neg

J

])
−
∑ #posj + #negj #posj #negj

H , .
#pos + #neg

[
#posj + #negj #posj + #negjj=1

]
Back to the example with([the restauran]) [ ts.

1 1 2 4 6 2 4
Gain(S,Patrons) = H , − H([0, 1]) + H([1, 0]) + H ,

2 2 12 12 12

([
6 6

])]
≈ 0.541 bits.

[
2

([
1 1

])
2

([
1 1

Gain(S,Type) = 1− H , + H ,
12 2 2 12 2 2

4

])
+ H

12

([
2 2 4 2 2
, + H , 0 bits.

4 4

])
12

([
4 4

])]
≈
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Actually Patrons has the highest gain among the attributes, and is chosen to be
the root of the tree. In general, we want to choose the feature A that maximizes
Gain(S,A).

One problem with Gain is that it likes to partition too much, and favors numerous
splits: e.g., if each branch contains 1 example:

Then,

H

[
#posj #negj

, = 0 for all j,
#posj + #negj #posj + #negj

so all those negative terms would be zero and we’d

]
choose that attribute over all

the others.

An alternative to Gain is the Gain Ratio. We want to have a large Gain, but
also we want small partitions. We’ll choose our attribute according to:

Gain(S,A) ← want large

SplitInfo(S,A) ← want small

where SplitInfo(S,A) comes from the partition:

J
Sj Sj

SplitInfo(S,A) =
∑ | |− log
|S|

(
| |

j=1
|S|

)
where |Sj| is the number of examples in branch j. We want each term in the

S
sum to be large. That means we want

| j | to be large, meaning that we want|S|
lots of examples in each branch.

Keep splitting until:
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• no more examples left (no point trying to split)

• all examples have the same class

• no more attributes to split

For the restaurant example, we get this:

A wrinkle: actually, it turns out that the class labels for the data were themselves
generated from a tree. So to get the label for an example, they fed it into a tree,
and got the label from the leaf. That tree is here:

8

Patrons?

No Yes

FullNone Some

No Yes

YesNo

No Yes

Hungry?

Type? No

French Italian Thai Burger

Yes YesNo Fri/Sat?

The decision tree induced from the 12-example 
training set.

Image by MIT OpenCourseWare, adapted from Russell and Norvig,
Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.



But the one we found is simpler!
Does that mean our algorithm isn’t doing a good job?

There are possibilities to replace H([p, 1 − p]), it is not the only thing we can
use! One example is the Gini index 2p(1− p) used by CART. Another example
is the value 1−max(p, 1− p).1

1If an event has prob p of success, this value is the proportion of time you guess incorrectly if you classify the
event to happen when p > 1/2 (and classify the event not to happen when p ≤ 1/2).
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WaitEstimate?

Alternate?

Alternate? Hungry?

Reservation? Fri/Sat?

Raining?Bar?

No
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Yes

Yes Yes

Yes

Yes

Yes

YES

No

No

No No

FullNone Some

>60 30-60 10-30 0-10

No Yes

No Yes

No Yes

No Yes No Yes

No Yes

No Yes

A decision tree for deciding whether to wait for a table.

Image by MIT OpenCourseWare, adapted from Russell and Norvig, Artificial Intelligence:
A Modern Approach, Prentice Hall, 2009.



C4.5 uses information gain for splitting, and CART uses the Gini index. (CART
only has binary splits.)

Pruning
Let’s start with C4.5’s pruning. C4.5 recursively makes choices as to whether to
prune on an attribute:

• Option 1: leaving the tree as is

• Option 2: replace that part of the tree with a leaf corresponding to the most
frequent label in the data S going to that part of the tree.

• Option 3: replace that part of the tree with one of its subtrees, corresponding
to the most common branch in the split

Demo
To figure out which decision to make, C4.5 computes upper bounds on the prob-
ability of error for each option. I’ll show you how to do that shortly.

• Prob of error for Option 1 ≤ UpperBound1

• Prob of error for Option 2 ≤ UpperBound2
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Gini index

Misclassification error

Entropy

Node impurity measures for two-class classification, as a function of the 
proportion p in class 2. Cross-entropy has been scaled to pass through 
(0.5, 0.5).

Image by MIT OpenCourseWare, adapted from Hastie et al., The Elements of Statistical
Learning, Springer, 2009.



• Prob of error for Option 3 ≤ UpperBound3

C4.5 chooses the option that has the lowest of these three upper bounds. This
ensures that (w.h.p.) the error rate is fairly low.

E.g., which has the smallest upper bound:

• 1 incorrect out of 3

• 5 incorrect out of 17, or

• 9 incorrect out of 32?

For each option, we count the number correct and the number incorrect. We
need upper confidence intervals on the proportion that are incorrect. To calcu-
late the upper bounds, calculate confidence intervals on proportions.

The abstract problem is: say you flip a coin N times, with M heads. (Here N
is the number of examples in the leaf, M is the number incorrectly classified.)
What is an upper bound for the probability p of heads for the coin?

Think visually about the binomial distribution, where we have N coin flips, and
how it changes as p changes:

p=0.5 p=0.1 p=0.9

We want the upper bound to be as large as possible (largest possible p, it’s an
upper bound), but still there needs to be a probability α to get as few errors as
we got. In other words, we want:

PM (∼Bin(N,preasonable upper bound) M or fewer errors) ≥ α
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which means we want to choose our upper bound, call it pα), so that it’s the
largest possible value of preasonable upper bound that still satisfies that inequality.

That is,

PM∼Bin(N,pα)(M or fewer errors) ≈ α∑M
Bin(z,N, pα)

z=0

≈ α

∑M (
N
)
pz (1− p )N−z ≈ α for M > 0 (for M = 0 it’s (1− p )Nα

z α α

z=0

≈ α)

We can calculate this numerically without a problem. So now if you give me α
M and N , I can give you pα. C4.5 uses α = .25 by default. M for a given branch
is how many misclassified examples are in the branch. N for a given branch is
just the number of examples in the branch, |Sj|.

So we can calculate the upper bound on a branch, but it’s still not clear how to
calculate the upper bound on a tree. Actually, we calculate an upper confidence
bound on each branch on the tree and average it over the relative frequencies of
landing in each branch of the tree. It’s best explained by example:

Let’s consider a dataset of 16 examples describing toys (from the Kranf Site).
We want to know if the toy is fun or not.
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Color Max number of players Fun?

red 2 yes
red 3 yes
green 2 yes
red 2 yes
green 2 yes
green 4 yes
green 2 yes
green 1 yes
red 2 yes
green 2 yes
red 1 yes
blue 2 no
green 2 yes
green 1 yes
red 3 yes
green 1 yes

Think of a split on color.

To calculate the upper bound on the tree for Option 1, calculate p.25 for each
branch, which are respectively .206, .143, and .75. Then the average is:

1 1
Ave of the upper bounds for tree = (6 .206 + 9

16
· · .143 + 1 · .75) = 3.273×

16
Let’s compare that to the error rate of Option 2, where we’d replace the tree
with a leaf with 6+9+1 = 16 examples in it, where 15 are positive, and 1 is

1negative. Calculate pα that solves α =
∑

z=0 Bin(z, 16, pα), which is .157. The
average is:

1 1
Ave of the upper bounds for leaf = 16 · .157 = 2.512

16
× .

16
Say we had to make the decision amongst only Options 1 and 2. Since 2.512 <
3.273, the upper bound on the error for Option 2 is lower, so we’ll prune the tree
to a leaf. Look at the data - does it make sense to do this?
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CART - Classification and Regression Trees (Breiman, Freedman, Olshen, Stone,
1984)

Does only binary splits, not multiway splits (less interpretable, but simplifies
splitting criteria).

Let’s do classification first, and regression later. For splitting, CART uses the
Gini index. The Gini index again is

variance of Bin(n, p)
p(1− p) = = variance of Bernoulli(p).

n

For pruning, CART uses “minimal cost complexity.”

Each subtree is assigned a cost. The first term in the cost is a misclassification
error. The second term is a regularization term. If we choose C to be large, the
tree that minimizes the cost will be sparser. If C is small, the tree that minimizes
the cost will have better training accuracy.

cost(subtree) =
lea

∑
1[yi=leaf’s class] + C [#leaves in subtree] .

ves j xi∈

∑
leaf j

We could create a sequence of nested subtrees by gradually increasing C.

Draw a picture

Now we need to choose C. Here’s one way to do this:

• Step 1: For each C, hold out some data, split, then prune, producing a tree
for each C.

• Step 2: see which tree is the best on the holdout data, choose C.

• Step 3: use all data, use chosen C, run split, then prune to produce the final
tree.

There are other ways to do this! You’ll use cross-validation in the homework.

Review C4.5 and CART
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CART’s Regression Trees

CART decides which attributes to split and where to split them.
In each leaf, we’re going to assign f(x) to be a constant.

Can you guess what value to assign?

Consider the empirical error, using the least squares loss:

Rtrain(f) =
∑

(yi
i

− f(xi))
2
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Partitions and CART

X
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X1
(b)  Partition of a two-dimensional 
      feature space by recursive binary 
      splitting, as used in CART, applied 
      to some fake data.
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(a) General partition that cannot 
     be obtained from recursive binary 
     splitting.
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X1 < t1
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X2 < t4

(c) Tree corresponding to the partition
     in the top right panel.

X2 X1

(d) A perspective plot of the prediction 
     surface. 

Image by MIT OpenCourseWare, adapted from Hastie et al., The Elements of Statistical
Learning, Springer, 2009.



Break it up by leaves. Call the value of f(x) in leaf j by fj since it’s a constant.

Rtrain(f) =
lea

∑
(y f(x 2
i i))∑ves j i

−
∈

∑
leaf j

= (y 2 =: Rtrain
i fj) j (fj).

leaves j i∈

∑
leaf j

−
lea

∑
ves j

To choose the value of the fj’s so that they minimize Rtrain
j , take the derivative,

set it to 0. Let |Sj| be the number of examples in leaf j.

d
0 =

˜df
i∈

∑
˜(yi f)2

f̃=fj
leaf j

− ∣∣∣
= −2

∑
(yi

i

− f̃)
∣

= −2
f̃=fj

(( )∣ ∑∣ yi
i

− |Sj|f̃

)∣
f̃=fj

1
fj =

∑
yi = ȳ

∣∣
|Sj|

Sj ,
i∈leaf j

where ȳSj is the sample average of the labels for leaf j’s examples.

So now we know what value to assign for f in each leaf. How to split? Greedily
want attribute A and split point s solving the following.

min

min (yi C1)
2 + min (yi C2)

2 .
A, s C1

x

∑
C2

leaf| (A)

− −
i∈{ x ≤s} x


a

∑
(

i leaf
for each attribute A

∈{ |x A)>s
do

}

linesearch over s



The first term means that we’ll choose the optimal C1 = ȳ{leaf|x(A)≤s . The second}
term means we’ll choose C2 = ȳ{leaf x(A)>s .| }

For pruning, again CART does minimal cost complexity pruning:

cost = (
lea

∑
ves j x

∑
yi

i∈S

− ȳSj)2 + C[# leaves in tree]

j
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